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Abstract. Safety is a syntactic condition of higher-order grammars that constrains occurrences of
variables in the production rules according to their type-theoretic order. In this paper, we introduce
the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition to
the setting of the simply-typed lambda calculus. In contrast to the original definition of safety, our
calculus does not constrain types (to be homogeneous). We show that in the safe lambda calculus,
there is no need to rename bound variables when performing substitution, as variable capture is
guaranteed not to happen. We also propose an adequate notion of β-reduction that preserves safety.
In the same vein as Schwichtenberg’s 1976 characterization of the simply-typed lambda calculus, we
show that the numeric functions representable in the safe lambda calculus are exactly the multivariate
polynomials; thus conditional is not definable. Finally we give a game-semantic analysis of safety:
We show that safe terms are denoted by P-incrementally justified strategies. Consequently pointers
in the game semantics of safe λ-terms are only necessary from order 4 onwards.

1 Introduction

Background

The safety condition was introduced by Knapik, Niwiński and Urzyczyn at FoSSaCS 2002
[14] in a seminal study of the algorithmics of infinite trees generated by higher-order gram-
mars. The idea, however, goes back some twenty years to Damm [6] who introduced an
essentially equivalent1 syntactic restriction (for generators of word languages) in the form
of derived types. A higher-order grammar (that is assumed to be homogeneously typed) is
said to be safe if it obeys certain syntactic conditions that constrain the occurrences of vari-
ables in the production (or rewrite) rules according to their type-theoretic order. Though
the formal definition of safety is somewhat intricate, the condition itself is manifestly im-
portant. As we survey in the following, higher-order safe grammars capture fundamental
structures in computation, offer clear algorithmic advantages, and lend themselves to a
number of compelling characterizations:

– Word languages. Damm and Goerdt [7] have shown that the word languages generated
by order-n safe grammars form an infinite hierarchy as n varies over the natural num-
bers. The hierarchy gives an attractive classification of the semi-decidable languages:

1 See de Miranda’s thesis [8] for a proof.



Levels 0, 1 and 2 of the hierarchy are respectively the regular, context-free, and indexed
languages (in the sense of Aho [4]), although little is known about higher orders.
Remarkably, for generating word languages, order-n safe grammars are equivalent to
order-n pushdown automata [7], which are in turn equivalent to order-n indexed gram-
mars [16, 17].

– Trees. Knapik et al. have shown that the Monadic Second Order (MSO) theories of
trees generated by safe (deterministic) grammars of every finite order are decidable2.
They have also generalized the equi-expressivity result due to Damm and Goerdt [7] to
an equivalence result with respect to generating trees: A ranked tree is generated by an
order-n safe grammar if and only if it is generated by an order-n pushdown automaton.

– Graphs. Caucal [5] has shown that the MSO theories of graphs generated3 by safe gram-
mars of every finite order are decidable. However, in a recent preprint [12], Hague et al.
have shown that the MSO theories of graphs generated by order-n unsafe grammars are
undecidable, but deciding their modal mu-calculus theories is n-EXPTIME complete.

Overview

In this paper, we aim to understand the safety condition in the setting of the lambda
calculus. Our first task is to transpose it to the lambda calculus and pin it down as an
appropriate sub-system of the simply-typed theory. A first version of the safe lambda cal-
culus has appeared in an unpublished technical report [3]. Here we propose a more general
and cleaner version where terms are no longer required to be homogeneously typed (see
Section 2 for a definition). The formation rules of the calculus are designed to maintain a
simple invariant: Variables that occur free in a safe λ-term have orders no smaller than that
of the term itself. We can now explain the sense in which the safe lambda calculus is safe
by establishing its salient property: No variable capture can ever occur when substituting
a safe term into another. In other words, in the safe lambda calculus, it is safe to use
capture-permitting substitution when performing β-reduction.

There is no need for new names when computing β-reductions of safe λ-terms, because
one can safely “reuse” variable names in the input term. Safe lambda calculus is thus
cheaper to compute in this näıve sense. Intuitively one would expect the safety constraint
to lower the expressivity of the simply-typed lambda calculus. Our next contribution is to
give a precise measure of the expressivity deficit of the safe lambda calculus. An old result
of Schwichtenberg [24] says that the numeric functions representable in the simply-typed
lambda calculus are exactly the multivariate polynomials extended with the conditional
function. In the same vein, we show that the numeric functions representable in the safe
lambda calculus are exactly the multivariate polynomials.

Our last contribution is to give a game-semantic account of the safe lambda calculus.
Using a correspondence result relating the game semantics of a λ-term M to a set of traver-
sals [21] over a certain abstract syntax tree of the η-long form of M (called computation

2 It has been recently been shown [21] that trees generated by unsafe deterministic grammars (of every finite
order) also have decidable MSO theories.

3 These are precisely the configuration graphs of higher-order pushdown systems.



tree), we show that safe terms are denoted by P-incrementally justified strategies. In such a
strategy, pointers emanating from the P-moves of a play are uniquely reconstructible from
the underlying sequence of moves and the pointers associated to the O-moves therein:
Specifically, a P-question always points to the last pending O-question (in the P-view)
of a greater order. Consequently pointers in the game semantics of safe λ-terms are only
necessary from order 4 onwards. Finally we prove that a η-long β-normal λ-term is safe if
and only if its strategy denotation is (innocent and) P-incrementally justified.

2 The safe lambda calculus

Higher-order safe grammars

We first present the safety restriction as it was originally defined [14]. We consider simple
types generated by the grammar A ::= o | A → A. By convention, → associates to the
right. Thus every type can be written as A1 → · · · → An → o, which we shall abbreviate
to (A1, · · · , An, o) (in case n = 0, we identify (o) with o). The order of a type is given by
ord(o) = 0 and ord(A→ B) = max(ord(A)+ 1, ord(B)). We assume an infinite set of typed
variables. The order of a typed term or symbol is defined to be the order of its type.

A (higher-order) grammar is a tuple 〈Σ,N ,R, S〉, where Σ is a ranked alphabet
(in the sense that each symbol f ∈ Σ has an arity ar(f) ≥ 0) of terminals4; N is a
finite set of typed non-terminals; S is a distinguished ground-type symbol of N , called the
start symbol; R is a finite set of production (or rewrite) rules, one for each non-terminal
F : (A1, . . . , An, o) ∈ N , of the form Fz1 . . . zm → e where each zi (called parameter) is a
variable of type Ai and e is an applicative term of type o generated from the typed symbols
in Σ ∪N ∪ {z1, . . . , zm}. We say that the grammar is order-n just in case the order of the
highest-order non-terminal is n.

The tree generated by a recursion schemeG is a possibly infinite applicative term,
but viewed as a Σ-labelled tree; it is constructed from the terminals in Σ, and is obtained
by unfolding the rewrite rules of G ad infinitum, replacing formal by actual parameters
each time, starting from the start symbol S. See e.g. [14] for a formal definition.

g

a g

a h

h
...

Example 1. Let G be the following order-2 recursion scheme:

S →H a
H zo → F (g z)

F φ(o,o) → φ (φ (F h))

where the arities of the terminals g, h, a are 2, 1, 0 respectively. The tree
generated by G is defined by the infinite term g a (g a (h (h (h · · ·)))).

A type (A1, · · · , An, o) is said to be homogeneous if ord(A1) ≥ ord(A2) ≥ · · · ≥
ord(An), and each A1, . . . , An is homogeneous [14]. We reproduce the following definition
from [14].

4 Each f ∈ Σ of arity r ≥ 0 is assumed to have type (o, · · · , o
︸ ︷︷ ︸

r

, o).



Definition 1 (Safe grammar). (All types are assumed to be homogeneous.) A term of
order k > 0 is unsafe if it contains an occurrence of a parameter of order strictly less than
k, otherwise the term is safe. An occurrence of an unsafe term t as a subexpression of
a term t′ is safe if it is in the context · · · (ts) · · ·, otherwise the occurrence is unsafe. A
grammar is safe if no unsafe term has an unsafe occurrence at a right-hand side of any
production.

Example 2. (i) Take H : ((o, o), o), f : (o, o, o); the following rewrite rules are unsafe (in
each case we underline the unsafe subterm that occurs unsafely):

G(o,o) x → H (f x)

F ((o,o),o,o,o) z x y → f (F (F z y) y (z x)) x

(ii) The order-2 grammar defined in Example 1 is unsafe.

Safety adapted to the lambda calculus

We assume a set Ξ of higher-order constants. We use sequents of the form Γ ⊢Ξ M : A to
represent terms-in-context where Γ is the context and A is the type of M . For simplicity
we write (A1, · · · , An, B) to mean A1 → · · · → An → B, where B is not necessarily ground.

Definition 2. (i) The safe lambda calculus is a sub-system of the simply-typed lambda
calculus defined by induction over the following rules:

(var)
x : A ⊢Ξ x : A

(const)
⊢Ξ f : A

f ∈ Ξ (wk)
Γ ⊢Ξ s : A

∆ ⊢Ξ s : A
Γ ⊂ ∆

(app)
Γ ⊢Ξ s : (A1, . . . , An, B) Γ ⊢Ξ t1 : A1 . . . Γ ⊢Ξ tn : An

Γ ⊢Ξ st1 . . . tn : B
ord(B) ⊑ ord(Γ )

(abs)
Γ, x1 : A1, . . . , xn : An ⊢Ξ s : B

Γ ⊢Ξ λx1 . . . xn.s : (A1, . . . , An, B)
ord(A1, . . . , An, B) ⊑ ord(Γ )

where ord(Γ ) denotes the set {ord(y) : y ∈ Γ} and “c ⊑ S” means that c is a lower-bound of
the set S. For convenience, we shall omit the subscript from ⊢Ξ whenever the generator-set
Ξ is clear from the context.
(ii) The sub-system that is defined by the same rules in (i), such that all types that occur
in them are homogeneous, is called the homogeneous safe lambda calculus.

The safe lambda calculus deviates from the standard definition of the simply-typed
lambda calculus in a number of ways. First the rules (app) and (abs) respectively can
perform multiple applications and abstract several variables at once. (Of course this feature
alone does not alter expressivity.) Crucially, the side-conditions in the application rule and
abstraction rules require that variables in the typing context have order no smaller than
that of the term being formed. We do not impose any constraint on types. In particular,
type-homogeneity as used originally to define safe grammars [14] is not required here.
Another difference is that we allow Ξ-constants to have arbitrary higher-order types.



Example 3 (Kierstead terms). Consider the terms M1 = λf.f(λx.f(λy.y)) and M2 =
λf.f(λx.f(λy.x)) where x, y : o and f : ((o, o), o). The term M2 is not safe because in
the subterm f(λy.x), the free variable x has order 0 which is smaller than ord(λy.x) = 1.
On the other hand, M1 is safe.

It is easy to see that valid typing judgements of the safe lambda calculus satisfy the
following simple invariant:

Lemma 1. If Γ ⊢ M : A then every variable in Γ occurring free in M has order at least
ord(M).

When restricted to the homogeneously-typed sub-system, the safe lambda calculus cap-
tures the original notion of safety due to Knapik et al. in the context of higher-order
grammars:

Proposition 1. Let G = 〈Σ,N ,R, S〉 be a grammar and let e be an applicative term
generated from the symbols in N ∪ Σ ∪ { zA1

1 , · · · , zAm
m }. A rule Fz1 . . . zm → e in R is

safe if and only if z1 : A1, · · · , zm : Am ⊢Σ∪N e : o is a valid typing judgement of the
homogeneous safe lambda calculus.

In what sense is the safe lambda calculus safe? A basic idea in the lambda calculus is
that when performing β-reduction, one must use capture-avoiding substitution, which is
standardly implemented by renaming bound variables afresh upon each substitution. In
the safe lambda calculus, however, variable capture can never happen (as the following
lemma shows). Substitution can therefore be implemented simply by capture-permitting
replacement, without any need for variable renaming. In the following, we write M{N/x}
to denote the capture-permitting substitution5 of N for x in M .

Lemma 2 (No variable capture). There is no variable capture when performing capture-
permitting substitution of N for x in M provided that Γ, x : B ⊢M : A and Γ ⊢ N : B are
valid judgments of the safe lambda calculus.

Proof. We proceed by structural induction. The variable, constant and application cases
are trivial. For the abstraction case, suppose M = λy.R where y = y1 . . . yp. If x ∈ y then
M{N/x} = M and there is no variable capture.

If x 6∈ y then we have M{N/x} = λy.R{N/x}. By the induction hypothesis there is no
variable capture in R{N/x}. Thus variable capture can only happen if the following two
conditions are met: x occurs freely in R, and some variable yi for 1 ≤ i ≤ p occurs freely
in N . By Lemma 1, the latter condition implies ord(yi) ≥ ord(N) = ord(x). Since x 6∈ y,
the former condition implies that x occurs freely in the safe term λy.R therefore Lemma 1
gives ord(x) ≥ ord(λy.R) ≥ 1 + ord(yi) > ord(yi) which gives a contradiction. ⊓⊔

Remark 1. A version of the No-variable-capture Lemma also holds in safe grammars, as is
implicit in (for example Lemma 3.2 of) the original paper [14].

5 This substitution is done by textually replacing all free occurrences of x in M by N without performing variable
renaming. In particular for the abstraction case we have (λy1 . . . yn.M){N/x} = λy1 . . . yn.M{N/x} when x 6∈
{y1 . . . yn}.



Example 4. In order to contract the β-redex in the term

f : (o, o, o), x : o ⊢ (λϕ(o,o)xo.ϕ x)(f x) : (o, o)

one should rename the bound variable x with a fresh name to prevent the capture of the free
occurrence of x in the underlined term during substitution. Consequently, by the previous
lemma, the term is not safe. Indeed, it cannot be because ord(x) = 0 < 1 = ord(fx).

Note that it is not the case that λ-terms that satisfy the No-variable-capture Lemma
are necessarily safe. For instance the β-redex in λyozo.(λxo.y)z can be contracted using
capture-permitting substitution, even though the term is not safe.

Reductions and transformations preserving safety

From now on we will use the standard notation M [N/x] to denote the substitution of N
for x in M . It is understood that, provided that M and N are safe, this substitution is
capture-permitting.

Lemma 3 (Substitution preserves safety). If Γ, x : B ⊢ M : A and Γ ⊢ N : B then
Γ ⊢M [N/x] : A.

This is proved by an easy induction on the structure of the safe term M .
It is desirable to have an appropriate notion of reduction for our calculus. However the

standard β-reduction rule is not adequate. Indeed, safety is not preserved by β-reduction
as the following example shows. Suppose that w, x, y, z : o and f : (o, o, o) ∈ Σ then the
safe term (λxy.fxy)zw β-reduces to (λy.fzy)w which is unsafe since the underlined order-1
subterm contains a free occurrence of the ground-type z. However if we perform one more
reduction we obtain the safe term fzw. This suggests an alternative notion of reduction
that performs simultaneous reduction of “consecutive” β-redexes. In order to define this
reduction we first introduce the appropriate notion of redex.

In the simply-typed lambda calculus a redex is a term of the form (λx.M)N . In the
safe lambda calculus, a redex is a succession of several standard redexes:

Definition 3. Let l ≥ 1 and n ≥ 1. We use the abbreviations x and x : A for x1 . . . xn

and x1 : A1, . . . , xn : An respectively.
A safe redex is a safe term of the form (λx.M)N1 . . . Nl such that the variables x are

abstracted altogether by one instance of the (abs) rule and the term (λx.M) is applied to
N1, . . . , Nl by one instance of the (app) rule.

Thus M , the Ni’s and the redex itself are all safe terms. For instance, in the case n < l, a
safe redex has a derivation tree of the following form:

. . .

Γ, x : A ⊢M : (An+1, . . . , Al, B)

Γ ⊢ λx.M : (A1, . . . , Al, B)
(abs)

. . .

Γ ⊢ N1 : A1
. . .

. . .

Γ ⊢ Nl : Al

Γ ⊢ (λx.M)N1 . . . Nl : B
(app)

We are now in a position to define a notion of reduction for safe terms.



Definition 4. We use the abbreviations x = x1 . . . xn, N = N1 . . . Nl. The relation βs is
defined on the set of safe redexes as:

βs = { (λx.M)N1 . . . Nl 7→ λxl+1 . . . xn.M
[
N/x1 . . . xl

]
, for n > l}

∪ { (λx.M)N1 . . . Nl 7→M [N1 . . . Nn/x]Nn+1 . . . Nl, for n ≤ l} .

whereM [R1 . . . Rk/z1 . . . zk] denotes the simultaneous substitution ofR1,. . . ,Rk for z1, . . . , zk

in M . The safe β-reduction, written →βs
, is the compatible closure of the relation βs

with respect to the formation rules of the safe lambda calculus.

Remark: The βs-reduction is a multi-step β-reduction i.e. →β⊂→βs
⊂։β .

Lemma 4 (βs-reduction preserves safety). If Γ ⊢ s : A and s→βs
t then Γ ⊢ t : A.

Proof. It suffices to show that the relation βs preserves safety. Suppose that s βs t where s
is the safe-redex (λx1 . . . xn.M)N1 . . . Nl with x1 : B1, . . . , xn : Bn and M of type C. W.l.o.g
we can assume that the last rule used to form the term s is (app) i.e. not the weakening
rule (wk), thus we have Γ = fv(s).

Suppose n > l then A = (Bl+1, . . . , Bn, C). By Lemma 3 we can form the safe term
Γ, xl+1 : Bl+1, . . . xn : Bn ⊢ M

[
N/x1 . . . xl

]
: C. By Lemma 1, since s is safe, all the

variables in Γ have order ≥ ord(A). This ensures that the side-condition of the (abs) rule
is verified if we abstract the variables xl+1 . . . xn, which gives us the judgement Γ ⊢ t : A.

Suppose n ≤ l. The substitution lemma gives Γ ⊢M [N1 . . . Nn/x] : C and using (app)
we form Γ ⊢ t : A. ⊓⊔

In general, safety is not preserved by η-expansion; for instance we have ⊢ λyozo.y :
(o, o, o) but 6⊢ λxo.(λyozo.y)x : (o, o, o). However safety is preserved by η-reduction:

Lemma 5 (η-reduction preserves safety). Γ ⊢ λϕ.sϕ : A with ϕ not occurring free in
s implies Γ ⊢ s : A.

Proof. Suppose Γ ⊢ λϕ.sϕ : A. If s is an abstraction then by construction of the safe term
λϕ.sϕ, s is necessarily safe. If s = N0 . . . Np with p ≥ 1 then again, since λϕ.N0 . . . Npϕ is
safe, each of the Ni is safe for 0 ≤ i ≤ p and for any z ∈ fv(λϕ.sϕ), ord(z) ≥ ord(λϕ.sϕ) =
ord(s). Since ϕ does not occur free in s we have fv(s) = fv(λϕ.sϕ), thus we can use the
application rule to form fv(s) ⊢ N0 . . . Np : A. The weakening rules permits us to conclude
Γ ⊢ s : A. ⊓⊔

The η-long normal form (or simply η-long form) of a term is obtained by hereditarily
η-expanding every subterm occurring at an operand position. Formally the η-long form

⌈t⌉ of a term t : (A1, . . . , An, o) with n ≥ 0 is defined by cases according to the syntactic
shape of t:

⌈λx.s⌉ = λx.⌈s⌉

⌈xs1 . . . sm⌉ = λϕ.x⌈s1⌉ . . . ⌈sm⌉⌈ϕ1⌉ . . . ⌈ϕn⌉

⌈(λx.s)s1 . . . sp⌉ = λϕ.(λx.⌈s⌉)⌈s1⌉ . . . ⌈sp⌉⌈ϕ1⌉ . . . ⌈ϕn⌉

where m ≥ 0, p ≥ 1, x is a variable or constant, ϕ = ϕ1 . . . ϕn and each ϕi : Ai is a fresh
variable.



Lemma 6 (η-long normalization preserves safety). If Γ ⊢ s : A then Γ ⊢ ⌈s⌉ : A.

Proof. First we observe that for any variable or constant x : A we have x : A ⊢ ⌈x⌉ : A.
We show this by induction on ord(x). It is verified for any ground type variable x since
x = ⌈x⌉. Step case: x : A with A = (A1, . . . , An, o) and n > 0. Let ϕi : Ai be fresh variables
for 1 ≤ i ≤ n. Since ord(Ai) < ord(x) the induction hypothesis gives ϕi : Ai ⊢ ⌈ϕi⌉ : Ai.
Using (wk) we obtain x : A,ϕ : A ⊢ ⌈ϕi⌉ : Ai. The application rule gives x : A,ϕ : A ⊢
x⌈ϕ1⌉ . . . ⌈ϕn⌉ : o and the abstraction rule gives x : A ⊢ λϕ.x⌈ϕ1⌉ . . . ⌈ϕn⌉ = ⌈x⌉ : A.

We now prove the lemma by induction on s. The base case is covered by the previous
observation. Step case:
– s = xs1 . . . sm with x : (B1, . . . , Bm, A), A = (A1, . . . , An, o) for some m ≥ 0, n > 0

and si : Bi for 1 ≤ i ≤ m. Let ϕi : Ai be fresh variables for 1 ≤ i ≤ n. By the
previous observation we have ϕi : Ai ⊢ ⌈ϕi⌉ : Ai, the weakening rule then gives us
Γ, ϕ : A ⊢ ⌈ϕi⌉ : Ai. Since the judgement Γ ⊢ xs1 . . . sm : A is formed using the
(app) rule, each sj must be safe for 1 ≤ j ≤ m, thus by the induction hypothesis
we have Γ ⊢ ⌈sj⌉ : Bj and by weakening we get Γ, ϕ : A ⊢ ⌈sj⌉ : Bj . The (app)
rule then gives Γ, ϕ : A ⊢ x⌈s1⌉ . . . ⌈sm⌉⌈ϕ1⌉ . . . ⌈ϕn⌉ : o. Finally the (abs) rule gives
Γ ⊢ λϕ.x⌈s1⌉ . . . ⌈sm⌉⌈ϕ1⌉ . . . ⌈ϕn⌉ = ⌈s⌉ : A, the side-condition of (abs) being verified
since ord(⌈s⌉) = ord(s).

– s = ts0 . . . sm where t is an abstraction. For some fresh variables ϕ1, . . . , ϕn we have
⌈s⌉ = λϕ.⌈t⌉⌈s0⌉ . . . ⌈sm⌉⌈ϕ1⌉ . . . ⌈ϕn⌉. Again, using the induction hypothesis we can
easily derive Γ ⊢ λϕ.⌈t⌉⌈s0⌉ . . . ⌈sm⌉⌈ϕ1⌉ . . . ⌈ϕn⌉ : A.

– s = λη.t where η : B and t : C is not an abstraction. The induction hypothesis gives
Γ, η : B ⊢ ⌈t⌉ : C and using (abs) we get Γ ⊢ λη.⌈t⌉ = ⌈s⌉ : A. ⊓⊔

Note that the converse does not hold in general, for instance λxo.f (o,o,o)xo is unsafe
although ⌈λx.fx⌉ = λxoyo.fxy is safe.

Numeric functions representable in the safe lambda calculus

Natural numbers can be encoded into the simply-typed lambda calculus using the Church
Numerals: each n ∈ N is encoded into the term n = λsz.snz of type I = ((o, o), o, o) where
o is a ground type. In 1976 Schwichtenberg [24] showed the following:

Theorem 1 (Schwichtenberg 1976). The numeric functions representable by simply-
typed λ-terms of type I → . . . → I using the Church Numeral encoding are exactly the
multivariate polynomials extended with the conditional function.

If we restrict ourselves to safe terms, the representable functions are exactly the mul-
tivariate polynomials:

Theorem 2. The functions representable by safe λ-expressions of type I → . . . → I are
exactly the multivariate polynomials.

Corollary 1. The conditional operator C : I → I → I → I verifying Ctyz →β y if t→β 0
and Ctyz →β z if t→β n+ 1 is not definable in the safe simply-typed lambda calculus.



Proof. Natural numbers are encoded using Church Numerals: n = λsz.snz. Addition: For
n,m ∈ N, n +m = λα(o,o)xo.(nα)(mαx). Multiplication: n.m = λα(o,o).n(mα). All these
terms are safe and clearly any multivariate polynomial P (n1, . . . , nk) can be computed by
composing the addition and multiplication terms as appropriate.

For the converse, let U be a safe λ-term of type I → I → I. The generalization to
terms of type In → I for n > 2 is immediate (they correspond to polynomials with n
variables). W.l.o.g we can assume that U = λxyαz.u where u is a safe term of ground type
in β-normal form with fv(u) ⊆ {x, y : I, z : o, α : o→ o}.

Notation: Let T be a set of terms of type τ → τ and T ′ be a set of terms of type τ
then T · T ′ denotes the set of terms {ss′ : τ | s ∈ T ∧ s′ ∈ T ′}. We also define T k · T ′

recursively as follows: T 0 · T ′ = T ′ and for k ≥ 0, T k+1 · T ′ = T · (T k · T ′) (i.e. T k · T ′

denotes {s1(. . . (sks
′)) | s1, . . . , sk ∈ T ∧ s′ ∈ T ′}). We define T+ · T ′ =

⋃

k>0 T
k · T ′ and

T ∗ · T ′ = (T+ · T ′) ∪ T ′. For two sets of terms T and T ′, we write T =β T
′ to express that

any term of T is β-convertible to some term t′ of T ′ and reciprocally.
Let us write N τ for the set of β-normal terms of type τ where τ ranges in {o, o→ o, I}

and with free variables in {x, y : I, z : o, α : o → o}. We write Aτ for the subset of N τ

consisting of applications only (i.e. not abstractions). Let B be the set of terms of type
(o, o) defined by B = {α} ∪ {λa.b | b ∈ {a, z}, a 6= z}. It is easy to see that the following
equations hold:

AI = {x, y}

N (o,o) = B ∪ AI · N (o,o) = (AI)∗ ·B

A(o,o) = {α} ∪ (AI)+ · B

Ao = N o = {z} ∪ A(o,o) · N o = (A(o,o))∗ · {z}

Hence Ao = ({α} ∪ {x, y}+ · ({α} ∪ {λa.b | b ∈ {a, z}, a 6= z}))∗ · {z}. Since u is safe, it
cannot contain terms of the form λa.z with a 6= z occurring at an operand position,
therefore since u belongs to Ao we have:

u ∈
(
{α} ∪ {x, y}+ · {α, i}

)∗
· {z} (1)

where i is the identity term of type o→ o.
We observe that ki =β i for all k ∈ N and for l ≥ 1, for all k1, . . . kl ∈ N, k1 . . . klα =β

k1 × . . .× klα. Hence for all m,n ∈ N we have:

{m,n}+ · {α, i} =β {i} ∪ {minjα | i+ j ≥ 1}

= {minjα | i, j ≥ 0} (since i = 0α)
(2)

therefore:

u[m,n/x, y] ∈ ({α} ∪ {m,n}+ · {α, i})∗ · {z} (by eq. 1)

=β

(

{α} ∪ {minjα | i, j ≥ 0}
)∗

· {z} (by eq. 2)

=β

{

minjα | i, j ≥ 0
}∗

· {z} (αz =β 1αz).



Furthermore, for allm,n, r, i, j ∈ N we haveminjα(αrz) =β α
r+minj

z, hence u[mn/x, y] =β

αp(m,n)z where p(m,n) =
∑

0≤k≤dm
iknjk for some ik, jk ≥ 0, k ∈ {0, .., d} and d ≥ 0. Thus

Umn =β p(m,n). ⊓⊔

For instance, the term C = λFGHαx.H(λy.Gαx)(Fαx) used by Schwichtenberg [24]
to define the conditional operator is unsafe since the underlined subterm is of order 1,
occurs at an operand position and contains an occurrence of x of order 0.

3 A game-semantic account of safety

Our aim here is to characterize safety, which is a syntactic property, by game semantics.
Because of length restriction, we shall assume that the reader is familiar with the basics of
game semantics. (For an introduction, we recommend [2]). Recall that a justified sequence
over an arena is an alternating sequence of O-moves and P-moves such that every move m,
except the opening move, has a pointer to some earlier occurrence of the move m0 such that
m0 enables m in the arena. A play is just a justified sequence that satisfies Visibility and
Well-Bracketing. A basic result in game semantics is that λ-terms are denoted by innocent
strategies, which are strategies that depends only on the P-view of a play. The main result
(Theorem 3) of this section is that if a λ-term is safe, then its game semantics (is an
innocent strategy that) is P-incrementally justified. In such a strategy, pointers emanating
from the P-moves of a play are uniquely reconstructible from the underlying sequence of
moves and pointers from the O-moves therein: Specifically a P-question always points to
the last pending O-question (in the P-view) of a greater order.

The proof of Theorem 3 depends on a Correspondence Theorem (see the Appendix)
that relates the strategy denotation of a λ-term M to the set of traversals over a certain
abstract syntax tree of the η-long form of M . In the language of game semantics, traversals
are just (concrete representations of) the uncovering (in the sense of Hyland and Ong [13])
of plays in the strategy denotation.

The useful transference technique between plays and traversals was originally intro-
duced by one of us [21] for studying the decidability of MSO theories of infinite structures
generated by higher-order grammars (in which the Σ-constants are at most order 1, and
uninterpreted). In the Appendix, we present an extension of this framework to the general
case of the simply-typed lambda calculus with free variables of any order. A new traversal
rule is introduced to handle nodes labelled with free variables. Also new nodes are added
to the computation tree to account for the answer moves of the game semantics, thus
enabling the framework to model languages with interpreted constants such as PCF (by
adding traversal rules to handle constant nodes).

Incrementally-bound computation tree

In [21] the computation tree of a grammar is defined as the unravelling of a finite graph
representing the long transform of a grammar. Similarly we define the computation tree of
a λ-term as an abstract syntax tree of its η-long normal form. We write l(t1, . . . , tn) with



n ≥ 0 to denote the tree with a root labelled l with n children subtrees t1, . . . , tn. In the
following, judgements of the form Γ ⊢ M : T refer to simply-typed terms not necessarily
safe unless mentioned.

Definition 5. The computation tree τ(M) of a simply-typed term Γ ⊢ M : T with
variable names in a countable set V is a tree with labels in {@}∪V∪{λx1 . . . xn | x1, . . . , xn ∈
V} defined from its η-long form as follows:

for n ≥ 0 and s : o, τ(λx1 . . . xn.s) = λx1 . . . xn(t) where τ(s) = λ(t)

for m ≥ 0 and x ∈ V, τ(xs1 . . . sm : o) = λ(x(τ(s1), . . . , τ(sm)))

for m ≥ 1, τ((λx.t)s1 . . . sm : o) = λ(@(τ(λx.t), τ(s1), . . . , τ(sm))) .

Even-level nodes are λ-nodes (the root is on level 0). A single λ-node can represent sev-
eral consecutive variable abstractions or it can just be a dummy lambda if the corresponding
subterm is of ground type. Odd-level nodes are variable or application nodes.

The order of a node n, written ord(n), is defined as follows: @-nodes have order 0. The
order of a variable-node is the type-order of the variable labelling it. The order of the root
node is the type-order of (A1, . . . , Ap, T ) where A1, . . . , Ap are the types of the variables in
the context Γ . Finally, the order of a lambda node different from the root is the type-order
of the term represented by the sub-tree rooted at that node.

We say that a variable node n labelled x is bound by a node m, and m is called the
binder of n, if m is the closest node in the path from n to the root such that m is labelled
λξ with x ∈ ξ. We introduce a class of computation trees in which the binder node is
uniquely determined by the nodes’ orders:

Definition 6. A computation tree is incrementally-bound if for all variable node x,
either x is bound by the first λ-node in the path to the root with order > ord(x) or x
is a free variable and all the λ-nodes in the path to the root except the root have order
≤ ord(x).

Proposition 2. (i) If M is safe then τ(M) is incrementally-bound.
(ii) Conversely, if M is a closed simply-typed term and τ(M) is incrementally-bound then

the η-long form of M is safe.

The assumption that M is closed is necessary. For instance for x, y : o, the two identical
computation trees τ(λxy.x) and τ(λy.x) are incrementally-bound but λxy.x is safe and λy.x
is not.

P-incrementally justified strategy

We now consider the game-semantic model of the simply-typed lambda calculus. The strat-
egy denotation of a term is written [[Γ ⊢M : T ]]. We define the order of a move m, written
ord(m), to be the length of the path from m to its furthest leaf in the arena minus 1. (There
are several ways to define the order of a move; the definition chosen here is sound in the
current setting where each question move in the arena enables at least one answer move.)



Definition 7. A strategy σ is said to be P-incrementally justified if for any play
s q ∈ σ where q is a P-question, q points to the last unanswered O-question in psq with
order strictly greater than ord(q).

Note that although the pointer is determined by the P-view, the choice of the move itself
can be based on the whole history of the play. Thus P-incremental justification does not
imply innocence.

The definition suggests an algorithm that, given a play of a P-incrementally justified
denotation, uniquely recovers the pointers from the underlying sequence of moves and from
the pointers associated to the O-moves therein. Hence:

Lemma 7. In P-incrementally justified strategies, pointers emanating from P-moves are
superfluous.

Example 5. Copycat strategies, such as the identity strategy idA on game A or the evalu-
ation map evA,B of type (A⇒ B) × A→ B, are all P-incrementally justified.6

The Correspondence Theorem gives us the following equivalence:

Proposition 3. For a β-normal term Γ ⊢ M : T , τ(M) is incrementally-bound if and
only if [[Γ ⊢M : T ]] is P-incrementally justified.

λ3

f 2

λy1

x0

Example: Consider the β-normal term Γ ⊢ f(λy.x) : o where y : o and Γ =
f : ((o, o), o), x : o. The figure on the right represents its computation tree with
the node orders given as superscripts. Node x is not incrementally-bound therefore
τ(f(λy.x)) is not incrementally-bound and by Proposition 3, [[Γ ⊢ f(λy.x) : o]] is not
incrementally-justified (although [[Γ ⊢ f : ((o, o), o)]] and [[Γ ⊢ λy.x : (o, o)]] are).

Propositions 2 and 3 allow us to show the following:

Theorem 3 (Safety and P-incremental justification).

(i) If Γ ⊢M : T is safe then [[Γ ⊢M : T ]] is P-incrementally justified.
(ii) If ⊢ M : T is a closed simply-typed term and [[⊢M : T ]] is P-incrementally justified

then the η-long form of the β-normal form of M is safe.

Putting Theorem 3(i) and Lemma 7 together gives:

Proposition 4. In the game semantics of safe λ-terms, pointers emanating from P-moves
are unnecessary i.e. they are uniquely recoverable from the underlying sequences of moves
and from O-moves’ pointers.

In fact, as the last example highlights, pointers are entirely superfluous at order 3 for
safe terms. This is because for question moves in the first two levels of an arena, the
associated pointers are uniquely recoverable thanks to the visibility condition. At the third
level, the question moves are all P-moves therefore their associated pointers are uniquely

6 In such strategies, a P-move m is justified as follows: either m points to the preceding move in the P-view or
the preceding move is of smaller order and m is justified by the second last O-move in the P-view.



recoverable by P-incremental justification. This is not true anymore at order 4: Take the
safe term ψ : (((o4, o3), o2), o1) ⊢ ψ(λϕ.ϕa) : o0 for some constant a : o, where ϕ : (o, o). Its
strategy denotation contains plays whose underlying sequence of moves is q0 q1 q2 q3 q2 q3 q4.
Since q4 is an O-move, it is not constrained by P-incremental justification and thus it can
point to any of the two occurrences of q3.

7

Safe PCF and Safe Idealised Algol

PCF is the simply-typed lambda calculus augmented with basic arithmetic operators, if-
then-else branching and a family of recursion combinator YA : ((A,A), A) for any type A.
We define safe PCF to be PCF where the application and abstraction rules are constrained
in the same way as the safe lambda calculus. This language inherits the good properties
of the safe lambda calculus: No variable capture occurs when performing substitution and
safety is preserved by the reduction rules of the small-step semantics of PCF. Using a PCF
version of the Correspondence Theorem we can prove the following:

Theorem 4. Safe PCF terms have P-incrementally justified denotations.

Similarly, we can define safe IA to be safe PCF augmented with the imperative features of
Idealized Algol (IA for short) [23]. Adapting the game-semantic correspondence and safety
characterization to IA seems feasible although the presence of the base type var, whose
game arena com

N × exp has infinitely many initial moves, causes a mismatch between the
simple tree representation of the term and its game arena. It may be possible to overcome
this problem by replacing the notion of computation tree by a “computation directed
acyclic graph”.

The possibility of representing plays without some or all of their pointers under the
safety assumption suggests potential applications in algorithmic game semantics. Ghica
and McCusker [10] were the first to observe that pointers are unnecessary for representing
plays in the game semantics of the second-order finitary fragment of Idealized Algol (IA2

for short). Consequently observational equivalence for this fragment can be reduced to the
problem of equivalence of regular expressions. At order 3, although pointers are necessary,
deciding observational equivalence of IA3 is EXPTIME-complete [20, 19]. Restricting the
problem to the safe fragment of IA3 may lead to a lower complexity.

4 Further work and open problems

The safe lambda calculus is still not well understood. Many basic questions remain. What
is a (categorical) model of the safe lambda calculus? Does the calculus have interesting
models? What kind of reasoning principles does the safe lambda calculus support, via

7 More generally, a P-incrementally justified strategy can contain plays that are not “O-incrementally justified”
since it must take into account any possible strategy incarnating its context, including those that are not
P-incrementally justified. In the given example, the version of the play that is not O-incrementally justified is
involved in the strategy composition [[⊢ M2 : (((o, o), o), o)]]; [[ψ : (((o, o), o), o) ⊢ ψ(λϕ.ϕa) : o]] where M2 denotes
the unsafe Kierstead term.



the Curry-Howard Isomorphism? Does the safe lambda calculus characterize a complexity
class, in the same way that the simply-typed lambda calculus characterizes the polytime-
computable numeric functions [15]? Do incrementally-justified strategies compose? Is the
addition of unsafe contexts to safe ones conservative with respect to observational (or
contextual) equivalence?

With a view to algorithmic game semantics and its applications, it would be interest-
ing to identify sublanguages of Idealised Algol whose game semantics enjoy the property
that pointers in a play are uniquely recoverable from the underlying sequence of moves.
We name this class PUR. IA2 is the paradigmatic example of a PUR-language. Another
example is Serially Re-entrant Idealized Algol [1], a version of IA where multiple uses of
arguments are allowed only if they do not “overlap in time”. We believe that a PUR lan-
guage can be obtained by imposing the safety condition on IA3. Murawski [18] has shown
that observational equivalence for IA4 is undecidable; is observational equivalence for safe
IA4 decidable?
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Appendix A – Computation tree, traversals and correspondence

In this section we adapt the notions of computation tree and traversals over the computa-
tion tree originally introduced in [21] to the context of the simply-typed lambda calculus
without constants. Everything remains valid in the presence of uninterpreted8 constants
since we can just consider them as free variables. Moreover there is no restriction on the
order of these constants, contrary to [21] where constants need to be of order at most one.
We will also state the Correspondence Theorem (Theorem 5) used in Sec. 3.

In the following we fix a simply typed term Γ ⊢M : T and we consider its computation
tree τ(M) as defined in Def. 5.

4.1 Pointers and justified sequences of nodes

We define the enabling relation on the set of nodes of the computation tree as follows:
m enables n, written m ⊢ n, if and only if n is bound by m (we write m ⊢i n to precise
that n is the ith variable bound by m), or m = r and n is a free variable, or n is a λ-node
and m is its parent node.

For any set of nodes S we write S↾r for {n ∈ S | r ⊢∗ n} – the subset of S constituted
of nodes hereditarily enabled by r. We call input-variables nodes the elements of N ↾r

var.

A justified sequence of nodes is a sequence of nodes with pointers such that each
variable or λ-node n different from the root has a pointer to a node m occurring before it
the sequence such that m ⊢ n. We represent the pointer in the sequence as follows m. . . n

i

.
where the label indicates that either n is labelled with the ith variable abstracted by the
λ-nodem or that n is the ith child of m. Children nodes are numbered from 1 onward except
for @-nodes where it starts from 0. Abstracted variables are numbered from 1 onward. The
ith child of n is denoted by n.i.

We say that a node n0 of a justified sequence is hereditarily justified by np if there
are nodes n1, . . . , np−1 in the sequence such that ni points to ni+1 for all i ∈ 0..p− 1.

8 A constant f is uninterpreted if the small-step semantics of the language does not contain any rule of the form
f . . .→ e. f can be regarded as a data constructor.



The notion of P-view ptq of a justified sequence of nodes t is defined the same way as
the P-view of a justified sequences of moves in Game Semantics:9

pǫq = ǫ ps ·m · . . . · λξq = psq ·m · λξ
for n /∈ Nλ, ps · nq = psq · n ps · rq = r

The O-view of s, written xsy, is defined dually. We borrow the game semantic termi-
nology: A justified sequences of nodes satisfies alternation if for any two consecutive nodes
one is a λ-node and the other is not, and P-visibility if every variable node points to a
node occurring in the P-view a that point.

4.2 Computation tree with value-leaves

Let us first fix some notations. We write r for the root of τ(M) and N , N@, Nλ and Nvar

for the set of nodes, @-labelled nodes, λ-nodes and variable nodes respectively. For n ∈ N ,
κ(n) denotes the subterm of ⌈M⌉ corresponding to the subtree rooted at n, in particular
κ(r) = ⌈M⌉. The type of a variable node labelled x is the type of x, the type of the root
is (A1, . . . , Ap, T ) where x1 : A1, . . . , xp : Ap are the free variables of M and the type of
n ∈ (Nλ ∪N@) \ {r} is the type of κ(n).

We now add another ingredient to the computation tree that was not originally used
in [21]. We write D to denote the set of values of the base type o. We add value-leaves

to τ(M) as follows: For each value v ∈ D and for each node n ∈ N we attach the child leaf
vn to n. We write V for the set of nodes and leaves of the computation tree. For $ ranging
in {@, λ, var}, we write V$ to denote the set N$ ∪ {vn | n ∈ N$, v ∈ D}.

Everything that we have defined can be lifted to this new version of computation tree.
A value-leaf has order 0. The enabling relation ⊢ is extended so that every leaf is enabled
by its parent node. A link going from a value-leaf vn to a node n is labelled by v: n . . . vn

v

.
For the definition of P-view and visibility, value-leaves are treated as λ-nodes if they are
at an odd level in the computation tree, and as variable nodes if they are at an even level.

We say that a node n is matched by vn if there is an occurrence of vn in the sequence
that points to n, otherwise we say that n is unmatched. The last unmatched node is
called the pending node. A justified sequence of nodes is well-bracketed if each value-
leaf occurring in it is justified by the pending node at that point. If t is a traversal then
we write ?(t) to denote the subsequence of t consisting only of unmatched nodes.

4.3 Traversals of the computation tree

A traversal is a justified sequence of nodes of the computation tree where each node
indicates a step that is taken during the evaluation of the term.

Definition 8. The set T rv(M) of traversals over τ(M) is defined by induction over the
following rules.

9 The equalities in the definition determine pointers implicitly. For instance in the second clause, if in the left-
hand side, n points to some node in s that is also present in psq then in the right-hand side, n points to that
occurrence of the node in psq.



(Empty) ǫ ∈ T rv(M).
(Root) r ∈ T rv(M).
(Lam) If t · λξ is a traversal then so is t · λξ · n where n is λξ’s child and if n is a variable

node then it points to the only10 occurrence of its enabler that is still present in pt ·λξq.
(App) If t · @ is a traversal then so is t · @ · n

0

.
(InputVarval) If t1 · x · t2 is a traversal with x ∈ N ↾r

var and ?(t1 · x · t2) =?(t1) · x then so
is t1 · x · t2 · vx

v

for all v ∈ D.
(InputVar) If t1 · x · t2 is a traversal with x ∈ N ↾r

var and ?(t1 · x · t2) =?(t1) · x then so
is t1 · x · t2 · n for any λ-node n whose parent occurs in xt1 · xy, n pointing to some
occurrence of its parent node in xt1 · xy.

(Copycat@) If t · @ · λz
0

. . . v
v

λz is a traversal then so is t · @ · λz . . . v
v

λz · v

v

@.

(Copycatλ) If t · λξ · x . . . v
v

x is a traversal then so is t · λξ · x . . . v
v

x · v

v

λξ.

(Copycatvar) If t · y · λξ . . . v

v

λξ is a traversal for some variable y not in N ↾r
var then so is

t · y · λξ . . . v
v

λξ · v

v

y.

(Var) If t′ · n · λx . . . xi

i

is a traversal for some variable xi not inN ↾r
var then so is t′ · n · λx . . . xi

i

· ληi

i

.

λ

@

λy
0

y

λη1...
ληi...

ληn...

λx
1

xi

A traversal always starts by visiting the root. Then it mainly
follows the structure of the tree. The (Var) rule permits to jump
across the computation tree. The idea is that after visiting a variable
node x, a jump is allowed to the node corresponding to the subterm
that would be substituted for x if all the β-redexes occurring in the

term were reduced. The sequence λ · @ · λy . . . y
1

· λx

1

. . . xi

i

· ληi

i

. . . is
an example of traversal of the computation tree shown on the right.

Proposition 5 (counterpart of proposition 6 from [22]). Let t be a traversal. Then

(i) t is a well-defined and well-bracketed justified sequence.
(ii) ?(t) is a well-defined justified sequence verifying alternation, P-visibility and O-visibility.
(iii) p?(t)q is the path in τ(M) from r to the last node in ?(t).

The reduction of a traversal t written t ↾ r, is the subsequence of t obtained by keeping
only the nodes that are hereditarily justified by r. This has the effect of eliminating the
“internal nodes” of the computation.

Application nodes are used to connect the operator and the operand of an application
in the computation tree but since they do not play any role in the computation of the
term, we can remove them from the traversals. We write t− @ for the sequence of nodes-
with-pointers obtained by removing from t all @-nodes and value-leaves of @-nodes, any
link pointing to an @-node being replaced by a link pointing to the immediate predecessor
of @ in t.

We introduce the two notations T rv(M)−@ = {t− @ | t ∈ T rv(M)} and T rv(M)↾r =
{t ↾ r | t ∈ T rv(M)}.

10 This is justified a posteriori by the fact that P-views are paths in the computation tree.



Remark 2. Clearly if M is β-normal then τ does not contain any @-node therefore all nodes
are hereditarily justified by r and we have T rv(M)−@ = T rv(M) = T rv(M)↾r.

Lemma 8 (View of a traversal reduction). If M is in β-normal form then for all
t ∈ T rv(M) we have p?(t) ↾ rq = p?(t)q ↾ r.

In the safe lambda calculus without interpreted constants this lemma follows immediately
from the fact that T rv(M) = T rv(M)↾r. This remains valid in the presence of interpreted
constants provided that the traversal rules implementing the constants are well-behaved.11

4.4 Computation trees and arenas

We consider the well-bracketed game model of the simply-typed lambda calculus. We choose
to represent strategies using “prefix-closed set of plays”. 12 We fix a term Γ ⊢ M : T and
write [[Γ ⊢M : T ]] for its strategy denotation. The answer moves of a question q are written
vq where v ranges in D.

Definition 9 (Mapping from nodes to moves). Let q be a question move of [[T ]] and
n ∈ N such that n and q are of type (A1, . . . , Ap, o). Let {q1, . . . , qp} ∪ {vq | v ∈ D} be the
set of moves enabled by q where each qi is of type Ai. The function ψn,q

M from V ↾n to [[T ]]
is defined as:

ψn,q
M = {n 7→ q} ∪ {vn 7→ vq | v ∈ D}

∪







∅, if p = 0 ;
⋃

m∈N |n⊢im
ψm,qi

M , if p ≥ 1 and n ∈ Nλ ;
⋃

i=1..p ψ
n.i,qi

M , if p ≥ 1 and n ∈ Nvar .

Note that ψn,q
M is only defined on nodes hereditarily enabled by n. For any n ∈ N let An

denote the type of κ(n). We write ψκ(n) for ψn,q

κ(n) where q denotes the initial move of [[An]].13

For a closed term ⊢M : T , the total function ϕM from Vλ ∪Vvar to [[T ]]⊎
⊎

n∈N ′

@

[[An]] is

defined as ϕM = ψM ∪
⋃

n∈N ′

@

ψκ(n) where N ′
@ denotes the set of children nodes of @-nodes.

For an open term x1 : X1, . . . , xn : Xn ⊢M : T , ϕM is defined as ϕλx1...xn.M . When there is
no ambiguity we omit the subscript in ϕM and ψM .

Remark 3. ϕ maps λ-nodes to O-questions, variable nodes to P-questions, value-leaves of
λ-nodes to P-answers and value-leaves of variable nodes to O-answers. Moreover ϕ maps
nodes of a given order to moves of the same order.

11 A traversal rule is well-behaved if it can be stated under the form “t = t1 · n · t2 ∈ T rv∧?(t) =?(t1) · n ∧ n ∈
NΣ ∪ Nvar ∧ P (t) ∧m ∈ S(t) =⇒ t1 · n · t2 ·m ∈ T rv” for some expression P expressing a condition on t and
function S mapping traversals of the form of t to a subset of the children of n.

12 In the literature, a strategy is commonly defined as a set of plays closed by taking a prefix of even length.
However for the purpose of showing the correspondence with traversals, the “prefix-closed” version is more
appropriate.

13 Arenas involved in the game semantics of simply-typed lambda calculus are trees.



If t = t0t1 . . . is a justified sequence of nodes in Vλ ∪ Vvar then ϕ(t) is defined to be the
sequence of moves ϕ(t0) ϕ(t1) . . . equipped with the pointers of t.

Example 6. Take λx.(λg.gx)(λy.y) with x, y : o and g : (o, o). The diagram below represents
the computation tree (middle), the arenas [[(o, o), o]] (left), [[o, o]] (right), [[o→ o]] (rightmost)

and ϕ = ψ ∪ ψ
λg,qλg

λg.gx ∪ ψ
λy,qλy

λy.y (dashed-lines).

λx

@

λg

g

λ

x

λy

y

qλx

qx

qλg

qg

qg1

qλy

qy

ψ

ψ
λg,qλg

λg.gx ψ
λy,qλy

λy.y

4.5 The Correspondence Theorem

In game semantics, strategy composition is achieved by performing a CSP-like “composition
+ hiding”. If the internal moves are not hidden then we obtain an alternative semantics
called revealed semantics in [11] and interaction semantics in [9]. The revealed semantics
of a term Γ ⊢M : T , written 〈〈Γ ⊢M : T 〉〉, is obtained by uncovering14 the internal moves
from [[Γ ⊢M : T ]] that are generated by the composition with the evaluation map ev at
each @-node of the computation tree. The inverse operation consists in filtering out the
internal moves.

In the simply-typed lambda calculus, the set T rv(M) of traversals of the computation
tree is isomorphic to the set of uncovered plays of the strategy denotation (this is the
counterpart of the “Path-Traversal Correspondence” of [21]). Moreover the set of traversal
reductions is isomorphic to the strategy denotation.

Theorem 5 (The Correspondence Theorem).

(i) ϕM : T rv(M)−@
∼=

−→ 〈〈Γ ⊢M : T 〉〉

(ii) ψM : T rv(M)↾r
∼=

−→ [[Γ ⊢M : T ]] .

Example 7. Take M = λfz.(λgx.fx)(λy.y)(fz) : ((o, o), o, o). The figure below represents
the computation tree (left tree), the arena [[((o, o), o, o)]] (right tree) and ψM (dashed line).
(Only question moves are shown for clarity.) The justified sequence of nodes t defined
hereunder is an example of traversal:

14 An algorithm that uniquely recovers hidden moves is given in Part II of [13].



λfz
@

λgx

f [1]

λ[2]

x

λy

y

λ[3]

f [4]

λ[5]

z

q0

q1

q2

q3 q4

ψM

t = λfz @ λgx f [1] λ[2] x λ[3] f [4] λ[5] z

t ↾ r = λfz f [1] λ[2] f [4] λ[5] z

ψM(t ↾ r) = q0 q1 q2 q1 q2 q3 ∈ [[M ]] .

Appendix B – Proof of Theorem 3 and 4

4.6 Proof of Proposition 2

(i) Suppose that M is safe. By Lemma 6 the η-long form of M is safe therefore τ(M) is
the tree representation of a safe term.

In the safe lambda calculus, the variables in the context with the lowest order must
be all abstracted at once when using the abstraction rule. Since the computation tree
merges consecutive abstractions into a single node, any variable x occurring free in the
subtree rooted at a node λξ different from the root must have order greater or equal
to ord(λξ). Reciprocally, if a lambda node λξ binds a variable node x then ord(λξ) =
1 + maxz∈ξ ord(z) > ord(x).

Let x be a bound variable node. Its binder occurs in the path from x to the root,
therefore, according to the previous observation, x must be bound by the first λ-node
occurring in this path with order > ord(x). Let x be a free variable node then x is not
bound by any of the λ-nodes occurring in the path to the root. Once again, by the previous
observation, all these λ-nodes except the root have order smaller than ord(x). Hence τ is
incrementally-bound.

(ii) Let M be a closed term such that τ(M) is incrementally-bound. We assume that
M is already in η-long form. We prove that M is safe by induction on its structure. The
base case M = λξ.x for some variable x is trivial. Step case: If M = λξ.N1 . . . Np. Let i
range over 1..p. We have Ni ≡ ληi.N

′
i for some non-abstraction term N ′

i . By the induction
hypothesis, λξ.Ni = λξηi.N

′
i is a safe closed term, and consequently N ′

i is necessarily safe.
Let z be a free variable of N ′

i not bound by ληi in Ni. Since τ(M) is incrementally-bound
we have ord(z) ≥ ord(λη1) = ord(Ni), thus we can abstract the variables η1 using the (abs)
which shows that Ni is safe. Finally we conclude ⊢ M = λξ.N1 . . . Np : T using the rules
(app) and (abs). ⊓⊔

4.7 Proof of Theorem 3

(i) Let M be a safe simply-typed term. By Lemma 4, its β-normal form M ′ is also
safe. By Proposition 2(i), τ(M ′) is incrementally-bound and by Proposition 3, [[M ′]] is
an incrementally-justified. Finally the soundness of the game model gives [[M ]] = [[M ′]]. (ii)
is a consequence of Lemma 4, Proposition 3 and 2(ii) and soundness of the game model. ⊓⊔



4.8 Proof of Theorem 4

The computation tree of a PCF term is defined as the least upper-bound of the chain of
computation trees of its syntactic approximants [2]. It is obtained by infinitely expanding
the Y combinator, for instance τ(Y (λfx.fx)) is the tree representation of the η-long form
of the infinite term (λfx.fx)((λfx.fx)((λfx.fx)(. . .

It is straightforward to define the traversal rules modeling the arithmetic constants of
PCF. Just as in the safe lambda calculus we had to remove @-nodes in order to reveal
the game-semantic correspondence, in safe PCF it is necessary to filter out the constant
nodes from the traversals. The Correspondence Theorem for PCF says that the interaction
game semantics is isomorphic to the set of traversals disposed of these superfluous nodes.
It is trivial to show it for term approximants. The result is then lifted to any PCF term
by observing that the function T rv↾r from the set of computation trees ordered by the
approximation ordering to the set of sets of justified sequences of nodes ordered by subset
inclusion is continuous.

Computation trees of Safe PCF terms are incrementally-bound. Moreover the traversal
rules for PCF are well-behaved hence lemma 8 still holds and the game-semantic analysis
of safety remains valid for PCF.


