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Todo list46

Analyzing the effect that a syntactic restriction (such as safety) has on the game-47

semantic model is a difficult task since the main feature of game semantics is precisely to48

be syntax-independent. The aim of this chapter is to establish an explicit correspondence49

between the game denotation of a term and its syntax. This will be used in the next50

chapter to give a characterization of the game semantics of the safe lambda calculus.51

Our approach follows ideas recently introduced by Ong [1], namely the notion of com-52

putation tree of a simply-typed lambda-term and traversals over the computation tree.53

A computation tree is just an abstract syntax tree (AST) representation of the η-long54

normal form of a term. Traversals are justified sequences of nodes of the computation55

tree respecting some formation rules. They are meant to describe the computation of the56

term, but at the same time they carry information about the syntax of the term in the57

following sense: the P-view of a traversal (computed in the same way as P-view of plays in58

game semantics) is a path in the computation tree. Traversals provide a way to perform59

local computation of β-reductions as opposed to a global approach where β-redexes are60

contracted using substitution.61

The culmination of this chapter is the Correspondence Theorem (Theorem 2.2). It62

states that traversals over the computation tree are just representations of the uncovering63

of plays in the strategy-denotation of the term. Hence there is an isomorphism between the64

strategy denotation of a term and its revealed game denotation. In a nutshell, the revealed65

denotation is computed similarly to the standard strategy denotation except that internal66

moves are not hidden after composition. In order to make a connection with the standard67

game denotation, we define an operation that extracts the core of a traversal by eliminating68

occurrences of “internal nodes”. These node occurrences are the counterparts of internal69

moves that are hidden when performing strategy composition in game semantics. This70
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leads to a correspondence between the standard game denotation of a term and the set71

traversal cores over its computation tree.72

Using this correspondence, it possible to analyze the effect that a syntactic restriction73

has on the strategy denotation of a term. This is illustrated in the next chapter where74

we rely on the Correspondence Theorem to analyze the game semantics of the safety75

restriction.76

Related works : The useful transference technique between plays and traversals was orig-77

inally introduced by Ong for studying the decidability of monadic second-order theories of78

infinite structures generated by higher-order grammars [1]. In this setting, the Σ-constants79

or terminal symbols are at most order 1, and are uninterpreted. Here we present an ex-80

tension of this framework to the general case of the simply-typed lambda calculus with81

free variables of any order. Further the term considered is not required to be of ground82

type contrary to higher-order grammars. This requires us to add new traversal rules to83

handle variables whose value is undetermined (i.e., those that cannot be resolved through84

redex-contraction). We also extend computation trees with additional nodes accounting for85

answer moves of game semantics. This enables our framework to be extended to languages86

with interpreted constants such as PCF and Idealized Algol.87

A notion of local computation of β-reduction has also been investigated through the88

use of special graphs called “virtual nets” that embed the lambda calculus [2].89

Asperti et al. introduced [3] a syntactic representation of lambda-terms based on Lamp-90

ing’s graphs [4]. They unified various notions of paths (regular, legal, consistent and91

persistent paths) that have appeared in the literature as ways to implement graph-based92

reduction of lambda-expressions. We can regard a traversal as an alternative notion of path93

adapted to the graph representation of lambda-expressions given by computation trees.94

1. Computation tree95

We work in the general setting of the simply-typed lambda calculus extended with a96

fixed set Σ of higher-order uninterpreted constants.1 We fix a simply-typed term-in-context97

Γ `M : T for the rest of the section.98

1.1. Definition99

We define the computation tree of a simply-typed lambda-term as an abstract syntax100

tree representation of its η-long normal form (Def. ??). Our definition generalizes the101

notion of computation tree for higher-order recursion schemes [1].102

We recall that a term M in η-long normal form is of the form λx.s0s1 . . . sm where103

x = x1 . . . xn for n ≥ 0 and s0s1 . . . sm is of ground type, each sj for j ∈ 1..m is in η-long104

nf, and either s0 is a variable or a constant and m ≥ 0; or s0 is an abstraction λy.s and105

1A constant c ∈ Σ is uninterpreted if the small-step semantics of the language does not contain any rule
of the form c M1 . . .Mk · · · → fc(M1, . . . , Mk) for some function fc over closed normal terms M1, . . . , Mk.
Think of such constant as a data constructor.
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λx

z

τ−(s1)

. . .

τ−(sm)

λx

@

τ−(λy.t)
τ−(s1)

. . .

τ−(sm)

τ−(λx.zs1 . . . sm : o) τ−(λx.(λy.t)s1 . . . sm : o)
m ≥ 0 and z ∈ V ∪ Σ m ≥ 1

Table 1: The tree τ−(M).

m ≥ 1 where s is in η-long nf. If M is of ground type then its η-long nf is of the form106

λ.N ; although the symbol ’λ’ does not correspond to a real lambda-abstraction—we call it107

‘dummy lambda’—it will still be convenient to keep it in expressions representing eta-long108

normal forms.109

Definition 1.1. Let Γ `st M : T be a simply-typed term with variable names from V and110

constants from Σ. The pre-computation tree τ−(M) with labels taken from {@} ∪Σ∪V ∪111

{λx1 . . . xn | x1, . . . , xn ∈ V, n ∈ N}, is defined inductively on its η-long normal form as112

follows.113

For m ≥ 0, z ∈ V ∪ Σ: τ−(λx.zs1 . . . sm : o) = λx〈z〈τ−(s1), . . . , τ
−(sm)〉〉

for m ≥ 1: τ−(λx.(λy.t)s1 . . . sm : o) = λx〈@〈τ−(λy.t), τ−(s1), . . . , τ
−(sm)〉〉 ,

where we write l〈t1, . . . , tn〉 for n ≥ 0 to denote the ordered tree whose root is labelled l114

and has n child-subtrees t1, . . . , tn. The trees from the equations above are illustrated in115

Table 1.116

By convention the first level of a tree (where the root lies) is numbered 0. In the tree117

τ−(M), nodes at odd-levels are variable, constant or application nodes; and at even-levels118

lies the λ-nodes. A single λ-node can represent several consecutive abstractions or it can119

just be a dummy lambda (if the corresponding subterm is of ground type).120

Definition 1.2. Let M be a simply-typed term not necessarily in η-long normal form. Let121

D denote the set of values of base type o. The computation tree of M , written τ(M)122

is the tree obtained from τ−(dMe) by attaching leaves to each node as follows: for every123

node n ∈ τ−(M), the corresponding node in τ(dMe) has a child leaf labelled vn, called124

value-leaf, for every possible value v ∈ D.125

Inner nodes of the tree are thus of three kinds:126

• λ-nodes labelled λx for some list of variables x (Note that a λ-node represents several127

consecutive variable abstractions),128
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• application nodes labelled @,129

• variable or constant nodes with labels in Σ ∪ V.130

A node is said to be prime if it is the 0thl child of an @-node. An inner node whose parent131

is a @-node or a Σ-node is called a spawn node.132

Example 1.1.133

• The computation tree of a ground type variable or constant α is λ

α

;134

• The computation tree of a higher-order variable or constant α : (A1, . . . , Ap, o) has135

the following form: λ
α

λξ1
. . .

. . . λξp
. . .

;136

Example 1.2. Take `st λf
o→o.(λuo→o.u)f : (o→ o)→ o→ o.137

Its η-long normal form is: Its computation tree is:

`st λf
o→ozo.

(λuo→ovo.u(λ.v))
(λyo.fy)
(λ.z)

: (o→ o)→ o→ o

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

138

Example 1.3. Take `st λu
ov((o→o)→o).(λxo.v(λzo.x))u : o→ ((o→ o)→ o)→ o.139

Its η-long normal form is: Its computation tree is:

`st λu
ov((o→o)→o).

(λxo.v(λzo.x))u
: o→ ((o→ o)→ o)→ o

λuv

@

λx

v

λz

x

λ

u

140
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Notations 1.1 We write ~ to denote the root of τ(M). We write E to denote the parent-141

child relation of the tree, V for the set of vertices (i.e., leaves and inner nodes) of the tree,142

N for the set of inner nodes and L for the set of value-leaves. Thus V = N ∪ L.143

We write NΣ for the set of Σ-labelled nodes, N@ for the set of @-labelled nodes, Nvar for144

the set of variable nodes, Nfv for the subset of Nvar consisting of free-variable nodes, Nprime145

for the set of prime nodes and Nspawn for the set of spawn nodes (= N ∩ E(|N@ ∪NΣ|)).146

For $ ranging over {@, λ, var, fv}, we write L$ to denote the set of value-leaves which are147

children of nodes from N$; formally L$ = {vn | n ∈ N$, v ∈ D}. We write V$ for N$ ∪ L$.148

For every lambda node n in Nλ we write M (n) for the subterm rooted at n and V (n) for149

the set of vertices of the sub-computation tree τ(M (n)); formally V (n) = E∗({n}) where150

E∗ denotes the transitive, reflexive closure of the parent-child relation E.151

Each subtree of the computation tree τ(M) represents a subterm of dMe. We define152

the function κ : N → ΛCh
→ (where ΛCh

→ denotes the set of Church typed lambda-terms) that153

maps a node n ∈ N to the subterm of dMe corresponding to the subtree of τ(M) rooted154

at n. In particular κ(~) = dMe.155

Remark 1.1 Since the computation tree is computed from the eta-long normal form, for156

every subtree of τ(M) of the form λϕ

n

λξ1
. . .

. . . λξp
. . .

, we have ordκ(n) = 0.157

Definition 1.3 (Type and order of a node). Suppose Γ ` M : T . The type of an inner-158

node n ∈ N of τ(M) written type(n) is defined as follows:159

type(~) = Γ→ T,

for n ∈ (Nλ ∪N@) \ {~}: type(n) = type of the term κ(n),

for n ∈ Nvar ∪NΣ: type(n) = type of the variable labelling n.

where the notation Γ → T is an abbreviation for (A1, . . . , Ap, T ) and A1, . . . , Ap are the160

types of the variables in the context Γ.161

The order of a node n, written ordn, is defined as follows: a value-leaf v ∈ L has order162

0 and the order of an inner node n ∈ N is defined as the order of its type. In particular,163

the type of a lambda node different from the root is the type of the term represented by164

the sub-tree rooted at that node, and the type of a variable-node is the type of the variable165

labelling it.166

Since the computation tree is calculated from the η-long normal form, all the @-nodes167

have order 0 (ord@ = 0); for every lambda node λξ 6= ~ we have ordλξ = 1+maxz∈ξ ord z;168

and if the root ~ is labelled λξ then ord~ = 1 + maxz∈ξ∪Γ ord z with the convention169

max ∅ = −1.170

Definition 1.4 (Binder). We say that a variable node n labelled x is bound by a node171

m, and m is called the binder of n, if m is the closest node in the path from n to the root172

such that m is labelled λξ with x ∈ ξ.173
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1.2. Pointers and justified sequence of nodes174

1.2.1. Definitions175

Definition 1.5 (Enabling). The enabling relation ` is defined on the set of nodes of176

the computation tree as follows. We write m ` n and we say that m enables n if and only177

if m ∈ L ∪Nλ ∪Nvar and one of the following conditions holds:178

• n ∈ Nfv and m is the root ~;179

• n ∈ Nvar \Nfv and m is n’s binder, in which case we write m `i n to precise that n180

is the ith variable bound by m;181

• n ∈ Nλ and m is n’s parent;182

• n ∈ L and m is n’s parent (i.e., n = vm for some v ∈ D).183

Formally:
` = {(~, n) |n ∈ Nfv}

∪ {(λx, x) |x ∈ Nvar \Nfv ∧ λx is x’s binder}
∪ {(m,λη) | m is λη’s parent and λη ∈ Nλ}
∪ {(m, vm) | v ∈ D, m ∈ N}

Note that in particular, free variable nodes are enabled by the root. Table 2 recapitulates184

the possible node types for the enabler node depending on the type of n.185

If n ∈ then m ∈
Nλ Nvar ∪NΣ ∪N@

Lvar Nvar

L@ N@

LΣ NΣ

Nvar Nλ

NΣ n.a.
N@ n.a.
Lλ Nλ

Table 2: Type of the enabler node in “m ` n”.

We say that a node n0 of the computation tree is hereditarily enabled by np ∈ N if186

there are nodes n1, . . . , np−1 ∈ N such that ni+1 enables ni for all i ∈ 0..p− 1.187

For every sets of nodes S,H ⊆ N we write SH` to denote the subset S∩ `∗ (H) of S
consisting of nodes hereditarily enabled by some node in H . Formally:

SH` = {n ∈ S |∃n0 ∈ H s.t. n0 `
∗ n} .

If H is a singleton {n0} then we abbreviate S{n0}` into Sn0`.188
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We have V ~`
var = V \ (V N@`

var ∪V
NΣ`
var ). The elements of N~`

var (i.e., variable nodes that are189

hereditarily enabled by the root of τ(M)) are called input-variables nodes.190

We use the following numbering conventions: The first child of a @-node—a prime191

node—is numbered 0; the first child of a variable or constant node is numbered 1; and192

variables in ξ are numbered from 1 onward (ξ = ξ1 . . . ξn). We write n.i to denote the ith193

child of node n.194

Definition 1.6 (Justified sequence of nodes). A justified sequence of nodes is a se-195

quence of nodes s of the computation tree τ(M) with pointers. Each occurrence in s of196

a node n in L ∪ Nλ ∪ Nvar has a link pointing to some preceding occurrence of a node m197

satisfying m ` n; and occurrences of nodes in N@ ∪NΣ do not have pointer.198

If an occurrence n points to an occurrence m in s then we say that m justifies n. If n199

is an inner node then we represent this pointer in the sequence as m. . . n
i

where the label200

indicates that either n is labelled with the ith variable abstracted by the λ-node m or that201

n is the ith child of m. The pointer associated to a leaf vm, for some value v ∈ D and202

internal node m ∈ N , is represented as m · . . . · vm

v

.203

To sum-up, a pointer in a justified sequence of nodes has one of the following forms:204

r · . . . · z for some occurrences r of τ(M)’s root and z ∈ Nfv ;

or λξ · . . . · ξi

i

for some variable ξi bound by λξ, i ∈ 1..|ξ| ;

or @ · . . . · λη

j

j ∈ {1..(arity(@)− 1)} ;

or α · . . . · λη

k

, for α ∈ NΣ ∪Nvar, k ∈ {1..arity(α)} ;

or m · . . . · vm

v

for some value v ∈ D and internal node m ∈ N .

205

We say that an inner node n in of a justified sequence of nodes is answered2 by the206

value-leaf vn if there is an occurrence of vn for some value v in the sequence that points to n,207

otherwise we say that n is unanswered. The last unanswered node is called the pending208

node. A justified sequence of nodes is well-bracketed if each value-leaf occurring in it is209

justified by the pending node at that point.210

For every justified sequence of nodes t we write ?(t) to denote the subsequence of t
consisting only of unanswered nodes. Formally:

?(u1 · n · u2 · vn) =?(u1 · n · u2) \ {n} for some value v ∈ D ,

?(u · n) =?(u) · n for n 6∈ L ,

where u \ {n} denotes the subsequence of u obtained by removing the occurrence n.211

2This terminology is deliberately suggestive of the correspondence with game-semantics.
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If u is a well-bracketed sequences then ?(u) can be defined as follows:

?(u · n . . . vn) =?(u) for some value v ∈ D ,

?(u · n) =?(u) · n where n 6∈ L .

Notations 1.2 We write s = t to denote that the justified sequences s and t have same212

nodes and pointers. Justified sequence of nodes can be ordered using the prefix ordering:213

t 6 t′ if and only if t = t′ or the sequence of nodes t is a finite prefix of t′ (and the pointers214

of t are the same as the pointers of the corresponding prefix of t′). Note that with this215

definition, infinite justified sequences can also be compared. This ordering gives rise to216

a complete partial order. We say that a node n0 of a justified sequence is hereditarily217

justified by np if there are nodes n1, n2, . . . np−1 in the sequence such that ni points to218

ni+1 for all i ∈ {0..p− 1}. We write tω to denote the last element of the sequence t.219

1.2.2. Projection220

We define two different projection operations on justified sequences of nodes.221

Definition 1.7 (Projection on a set of nodes). Let A be a subset of V , the set of vertices222

of τ(M), and t be a justified sequence of nodes then we write t � A for the subsequence223

of t consisting of nodes in A. This operation can cause a node n to lose its pointer. In224

that case we reassign the target of the pointer to the last node in t6n � A that hereditarily225

justifies n (This node can be found by following the pointers from n until reaching a node226

appearing in A); if there is no such node then n just loses its pointer.227

Definition 1.8 (Hereditary projection). Let t be a justified sequence of nodes of T rav(M)228

and n be some occurrence in t. We define the justified sequence t � n as the subsequence229

of t consisting of nodes hereditarily justified by n in t.230

Lemma 1.1. The projection function � n defined on the cpo of justified sequences ordered231

by the prefix ordering is continuous.232

Proof. Clearly � n is monotonous. Suppose that (ti)i∈ω is a chain of justified sequences.233

Let u be a finite prefix of (
∨
ti) � n. Then u = s � n for some finite prefix s of

∨
ti. Since234

s is finite we must have s 6 tj for some j ∈ ω. Therefore u 6 tj � n 6
∨

(tj � n). This is235

valid for every finite prefix u of (
∨
ti) � n thus (

∨
ti) � n 6

∨
(tj � n).236

The nodes occurrences that do not have pointers in a justified sequence are called initial237

occurrences. An initial occurrence is either the root of the computation tree, an @-node238

or a Σ-node. Let n be occurrence in a justified sequence of nodes t. The subsequence of t239

consisting of occurrences that are hereditarily justified by the same initial occurrence as n240

is called thread of n. Thus each thread in a traversal contains a single initial occurrence.241

The thread of n is given by n � i where i is the first node in t hereditarily justifying n; i is242

called the initial occurrence of the thread of n.243
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1.2.3. Views244

The notion of P-view ptq of a justified sequence of nodes t is defined the same way as245

the P-view of a justified sequences of moves in Game Semantics:246

Definition 1.9 (P-view of justified sequence of nodes). The P-view of a justified sequence
of nodes t of τ(M), written ptq, is defined as follows:

pεq = ε
ps · nq = psq · n for n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ ;

ps ·m · . . . · nq = psq ·m · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;
ps · rq = r if r is an occurrence of ~ (τ(M)’s root) .

The equalities in the definition determine pointers implicitly. For instance in the second247

clause, if in the left-hand side, n points to some node in s that is also present in psq then248

in the right-hand side, n points to that occurrence of the node in psq.249

The O-view of s, written xsy, is defined dually.250

Definition 1.10 (O-view of justified sequence of nodes). The O-view of a justified sequence
of nodes t of τ(M), written xty, is defined as follows:

xεy = ε
xs · ny = xsy · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;

xs ·m · . . . · ny = xsy ·m · n for n ∈ Nvar ∪ Lλ ;
xs · ny = n for n ∈ N@ ∪NΣ .

We borrow some terminology from game semantics:251

Definition 1.11. A justified sequence of nodes s satisfies:252

- Alternation if for every two consecutive nodes in s, one is in Vλ and not the other one;253

- P-visibility if for every occurrence in s of a node in Nvar ∪ Lλ, its justifier occur in the254

P-view a that point;255

- O-visibility if the justifier of each lambda node in s occurs in the O-view a that point.256

We then have the same basic property as in game semantics: The P-view (resp. O-257

view) of a justified sequence satisfying P-visibility (resp. O-visibility) is a well-formed258

justified sequence satisfying P-visibility (resp. P-visibility). (This property follows by an259

easy induction.)260

1.3. Traversal of the computation tree261

We now define the notion of traversal over the computation tree τ(M). We first consider262

the simply-typed lambda calculus without interpreted constants; everything remains valid263

in the presence of uninterpreted constants as we can just consider them as free variables.264

In the second section, we extend the notion of traversal to a more general setting with265

interpreted constants.266
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1.3.1. Traversals for simply-typed λ-terms267

Informally, a traversal is a justified sequence of nodes of the computation tree where268

each node indicates a step that is taken during the evaluation of the term.269

Definition 1.12 (Traversals for simply-typed lambda-terms). The set T rav(M) of traver-270

sals over τ(M) is defined by induction over the rules of Table 3. A traversal that cannot271

be extended by any rule is said to be maximal.272

Initialization rules

(Empty) ε ∈ T rav(M).

(Root) The sequence consisting of a single occurrence of τ(M)’s root is a traversal.

Structural rules

(Lam) If t · λξ is a traversal then so is t · λξ · n where n denotes λξ’s child and:

– If n ∈ N@ ∪NΣ then it has no justifier;
– if n ∈ Nvar \Nfv then it points to the only occurrencea of its binder in pt · λξq;
– if n ∈ Nfv then it points to the only occurrence of the root ~ in pt · λξq.

(App) If t ·@ is a traversal then so is t ·@ · n
0

.

Input-variable rules

(InputVar) If t is a traversal where tω ∈ N~`
var ∪L

~`
λ and x is an occurrence of a variable

node in xty then so is t · n for every child λ-node n of x, n pointing to x.

(InputValue) If t1 ·x · t2 is a traversal with pending node x ∈ N~`
var then so is t1 · x · t2 · vx

v

for all v ∈ D.

Copy-cat rules

(Var) If t · n · λx . . . xi

i

is a traversal where xi ∈ N
@`
var then so is t · n · λx . . . xi

i

· ληi

i

.

(Value) If t ·m · n . . . v
v

n is a traversal where n ∈ N then so is t ·m · n . . . v
v

n · v

v

m.

Table 3: Traversal rules for the simply-typed lambda calculus.

aProp. 1.1 will show that P-views are paths in the tree thus n’s enabler occurs exactly once in the
P-view.
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Example 1.4. The following justified sequence is a traversal of the computation tree from
Example 1.2:

t = λfz ·@ · λuv · u · λy · f · λ · y · λ · v · λ · z .

Remark 1.2273

1. The rule (Value) from Table 3 can be equivalently reformulated into four distinct274

rules (Valueλ7→@), (Value@ 7→λ), (Valueλ7→var) and (Valuevar 7→λ), each one dealing with a275

different possible category for the nodes n and m:276

(Valueλ7→@) If t ·@ · λz
0

. . . v
v

λz is a traversal then so is t ·@ · λz . . . v
v

λz · v

v

@.277

(Value@ 7→λ) If t · λξ ·@ . . . v@

v

is a traversal then so is t · λξ ·@ . . . v
v

@ · v

v

λξ.278

(Valueλ7→var) If t · y · λξ . . . vλξ

v

is a traversal with y ∈ N@`
var then so is t · y · λξ . . . v

v

λξ · v

v

y.279

(Valuevar 7→λ) If t · λξ · x . . . v
v

x is a traversal where x ∈ Nvar then so is t · λξ · x . . . v
v

x · v

v

λξ.280

In the rest of this chapter we will prove various resulting by induction on the structure281

of a traversal and by case analysis on the last rule used to form it. Some of these282

proofs will rely on the above-defined reformulation of (Value) instead of its original283

definition.284

2. In the rule (InputValue), the last node in the traversal t1 · x · t2 necessarily belongs
to Nvar ∪ Lλ. Indeed, since the pending node x is a variable node, the traversal is of
the form

. . . · x · λη1 . . . v
1
λη1
λη2 . . . v

2
λη2

. . . ληk . . . v
k
ληk

for some nodes ληk, values vk ∈ D and k ≥ 0; thus the last occurrence belongs to285

Nvar if k = 0 and to Lλ if k ≥ 1.286

Furthermore, the pending node appears necessarily in the O-view.287

These two observations show that the rule (InputValue) is essentially a specialization288

of (InputVar) to value-leaves. The only difference is that (InputVar) allows the visited289

node to be justified by any variable node occurring in the O-view whereas (InputValue)290

constrains the node to be justified by the pending node (which necessarily occurs in291

the O-view). This restriction is here to ensure that traversals are well-bracketed.292

3. In the rule (Value), it is possible to replace the condition “n ∈ N” by the stronger293

“n ∈ N \ N~`
λ ”. Indeed a later result (Lemma 1.6) will show that if n belongs to294

N~`
λ then the preceding occurrence m is necessarily an input-variable. Furthermore,295

another result (Prop. 1.1) shows that traversals are well-bracketed, therefore m is296

necessarily the pending node. Hence the rule (InputValue) can be use in place of297

(Value) to visit vm.298

The advantage of this alternative formulation is that the traversal rules have disjoint299

domains of definition.300
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A traversal always starts with the root node and mainly follows the structure of the tree.301

The exception is the (Var) rule which permits the traversal to jump across the computation302

tree. The idea is that after visiting a non-input variable node x, a jump can be made to303

the node corresponding to the subterm that would be substituted for x if all the β-redexes304

occurring in the term were to be reduced. Let λx be x’s binder and suppose x is the ith305

variable in x. The binding node necessarily occurs previously in the traversal (This will be306

proved in Prop. 1.1). Since x is not hereditarily justified by the root, λx is not the root of307

the tree and therefore it is not the first node of the traversal. We do a case analysis on the308

node preceding λx:309

• If it is an @-node then λx is necessarily the first child node of that node and it has310

exactly |x| siblings:311

@

λx

x

0

λη1

1

ληi

i

λη|x|

|x|

312

In that case, the next step of the traversal is a jump to ληi—the ith child of @—which
corresponds to the subterm that would be substituted for x if the β-reduction was
performed:

t′ ·@ · λx · . . . · x

i

· ληi

i

· . . . ∈ T rav(M) .

• If it is a variable node y, then the node λx was necessarily added to the traversal313

t≤y using the (Var) rule. (Indeed, if it was visited using (InputVar) then λx would314

be hereditarily justified by the root, but this is not possible since xi, bound by λx,315

is not an input-variable.) Therefore y is substituted by the term κ(λx) during the316

evaluation of the term.317

Consequently, during reduction, the variable x will be substituted by the subterm
represented by the ith child node of y. Hence the following justified sequence is also
a traversal:

t′ · y · λx · . . . · x

i

· ληi

i

· . . .

Remark 1.3 Our notions of computation tree and traversal differ slightly from the original318

definitions by Ong [1]. In his setting:319

- computation trees contain (uninterpreted first-order) constants. Here we have not ac-320

counted for constants but as previously observed, uninterpreted constants can just be321

regarded as free variables, thus we do not lose any expressivity here.322
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- constants are restricted to order one at most. (Terms are used as generators of trees323

where first-order constants act as tree-node constructors). Here we do not need this324

restriction: as long as constants are uninterpreted we can regard them as free variables,325

even at higher-orders.326

- one rule ((Sig)) suffices to model the first-order constants. In contrast our setting327

accounts for higher-order variables, thus the more complicated rules (InputValue) and328

(InputVar) are required.329

- computation trees do not have value-leaves. These are not necessary to model the pure330

simply-typed lambda calculus. There will be necessary, however, when it comes to model331

interpreted constants such as those of PCF or IA.332

Example 1.5. Consider the following computation tree:333

λ

@

λy

y

λη1

1

ληi

i

ληn

n

0
λx

xi

1

334

An example of traversal of this tree is:

λ ·@ · λy · . . . · y

1

· λx

1

· . . . · xi

i

· ληi

i

· . . .

Lemma 1.2. Take a traversal t ending with an inner node hereditarily justified by an
application node @. Then if we represent only the nodes appearing in the O-view, the
thread of tω has the following shape:

@ · λξ0 . . . x1 · λξ1 . . . x2 · λξ2 . . . x3 · λξ3 . . . x4 . . . xk−1λξk−1 . . . xkλξk .

Suppose that the initial node @ occurs in the computation as follows:335

. . .

@

λη1
. . . ληq

336
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Let τi denote the sub-tree rooted at ληi for i ∈ {1..q}. Then for every j ∈ {1..k}, xj and337

λξj must belong to two different subtrees τi and τi′. Furthermore, xj is hereditarily justified338

by some occurrence of ληi in t and λξj is hereditarily justified by some occurrence of ληi′339

in t (and therefore λξj ∈ V
ληi` and xj ∈ V

ληi′`).340

Proof. The proof is by an easy induction.341

1.3.2. Traversal rules for interpreted constants342

The framework that we have established up to now aims at providing a computation343

model of simply-typed lambda-terms. It is possible to extend it to other extensions of the344

simply-typed lambda calculus. This is done by completing the traversal rules from Table345

3 with new rules describing the behaviour of the interpreted constants of the language346

considered. For instance in the case of PCF, we need to define rules for the interpreted347

constant cond that replicate the behaviour of the conditional operation. (In a forthcoming348

section of this chapter we will give a complete definition of the constant traversal rules for349

PCF and IA.)350

We mentioned before that uninterpreted constants can be regarded as free variables. In351

the same way, we can consider interpreted constants as a generalization of free variables: for352

both of them, the “code” describing their computational behaviour is not defined within the353

scope of the term, it is instead assumed that the environment knows how to interpret them.354

Free variables, however, are more restricted than interpreted constants: When evaluating355

an applicative term with a free variable in head position, the evaluation of the head variable356

does not depend on the result of the evaluation of its parameters; whereas for applicative357

term with an interpreted constant in head position, the outcome of the evaluation may358

depend on the result of the evaluation of its parameters (e.g., the PCF constant cond359

branches between two control points depending on the result of the evaluation of its first360

parameter).361

We can thus derive a prototype for constant traversal rules by generalizing the input-362

variable rules (InputValue) and (InputVar):363

Definition 1.13 (Constant traversal rule). A constant traversal has one of the following
two forms:

(Σ-Value)
t = t1 · α · t2 ∈ T rav(M) α ∈ NΣ ∪N

NΣ`
var ?(t)ω = α P (t)

t′ = t1 · α · t2 · v(t) ∈ T rav(M)

or

(Σ)/(Σ-Var)
t ∈ T rav(M) tω ∈ NΣ ∪N

NΣ` ∪ Lλ P (t)

t · n(t) ∈ T rav(M)

where:364

• P (t) is a predicate expressing some condition on t;365

• v(t) is a value-leaf of the node α that is determined by the traversal t;366

• n(t) is a lambda-node determined by t, and its link—also determined by t—points367

to some occurrence of its parent node in xty.368
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Clearly, such rules preserve well-bracketing, alternation and visibility.369

Remark 1.4 The extra power of the constant rules over the input-variable rules (InputValue)370

and (InputVar) comes from their ability to base their choice of next visited node on the371

shape of the traversal t.372

From now on, to make our argument as general as possible, we consider a simply-typed
lambda calculus language extended with higher-order interpreted constants for which some
constant traversal rules have been defined (in the sense of Def. 1.13). Furthermore, we
complete the set of rules with the following additional copy-cat rule:

(ValueΣ 7→λ) t · λξ · c . . . v
v

c ∈ T rav(M) ∧ c ∈ Σ =⇒ t · λξ · c . . . v
v

c · v

v

λξ ∈ T rav(M) .

Definition 1.14. A constant traversal rules is well-behaved if for every traversal t · α · u · n373

formed with the rule we have ?(u) = ε.374

An example is the rule (Σ-Value) which is well-behaved due to the fact that traversals375

are well-bracketed. The rule (Σ)/(Σ-Var), however, is not well-behaved since the node n(t)376

does not necessarily points to the pending node in t.377

Lemma 1.3. If Σ-constants have order 1 at most, then constant rules are necessarily all378

well-behaved.379

Proof. In the computation tree, an order-1 constant hereditarily enables only its immediate
children (which are all dummy lambda nodes λ). Hence a traversal formed with the rule
(Σ)/(Σ-Var) is of the form:

t = . . . · α · u · λ

where α appears in xty.380

If u = ε then the result trivially holds. Otherwise, u’s first node has necessarily been381

visited with the rule (Σ)/(Σ-Var) thus u’s first node is a dummy lambda node λ′ pointing to382

α. Since α occurs in xty and since the node λ′ enables only its value-leaf in the computation383

tree, t must be of the following shape:384

t = . . . ·α · λ′ . . . vλ′ . . .
︸ ︷︷ ︸

u

λ385

for some value leaf vλ′ of λ′.386

Again, the node following vλ′ must be a dummy lambda node pointing to α. By iterating387

the same argument we obtain that the segment u is a repetition of segments of the form388

λ′ · . . . vλ′ . Hence ?(u) = ε.389
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1.3.3. Property of traversals390

Proposition 1.1. Let t be a traversal. Then:391

(i) t is a well-defined justified sequence satisfying alternation, well-bracketing, P-visibility392

and O-visibility;393

(ii) If the last element of t is not a value-leaf whose parent-node is a lambda node (i.e.,394

tω 6∈ Lλ) then ptq is the path in the computation tree going from the root to the node395

tω.396

Proof. This is the counterpart of another result proved by Ong in the paper where he397

introduces the theory of traversals [5, proposition 6]. The original proof—an induction398

on the traversal rules—can be adapted to take into account the constant rules and the399

presence of value-leaves in the traversal. We detail the case (Lam) only. We need to show400

that n’s binder occurs only once in the P-view at that point. By the induction hypothesis401

(ii) we have that pt · λξq is a path in the computation tree from the root to λξ. But n’s402

binder occurs only once in this path, therefore the traversal t · λξ · n is well-defined and403

satisfies P-visibility. Thus (i) is satisfied. Furthermore n is a child of λξ therefore (ii) also404

holds.405

Lemma 1.4. If t ·n is a traversal with n ∈ Nvar ∪NΣ ∪N@ then t 6= ε and tω is n’s parent406

in τ(M) (and is thus a lambda node).407

Proof. By inspecting the traversal rules, we observe that (Lam) is the only rule which can408

visit a node in Nvar ∪NΣ ∪N@. Hence t is not empty and tω is n’s parent in τ(M).409

Lemma 1.5. Suppose that M is β-normal. Let t be a traversal of τ(M) and n be a node
occurring in t. Then the root ~ does not hereditarily enable n if and only if n is hereditarily
enabled by some node in NΣ. Formally:

n 6∈ N~` ⇐⇒ n ∈ NNΣ` .

Proof. In a computation tree, the only nodes that do not have justification pointer are:410

the root ~, @-nodes and Σ-constant nodes. But since M is in β-normal form, there is411

no @-node in the computation tree. Hence nodes are either hereditarily enabled by ~ or412

hereditarily enabled by some node in NΣ. Moreover ~ is not in NΣ therefore the “or” is413

exclusive: a node cannot be both hereditarily enabled by ~ and by some node in NΣ.414

Lemma 1.6 (The O-view is contained in a single thread). Let t ∈ T rav(M).415

(a) If t = . . . ·m ·n where m ∈ Nvar ∪NΣ ∪N@ ∪Lλ and n ∈ Nλ ∪Lvar ∪LΣ ∪L@ then m416

and n are in the same thread in t: they are hereditarily justified by the same initial417

occurrence (which is either τ(M)’s root, a Σ-constant or an @-node);418

(b) All the nodes in xty belong to the same thread.419
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Proof. Clearly (b) follows immediately from (a) due to the way the O-view is computed.420

We show (a) by induction on the last traversal rule used to form t. The results trivially hold421

for the base cases (Empty) and (Root). Step case: Take t = t′ ·n. If n ∈ Nλ∪Lvar∪LΣ∪L@422

then we do not need to show (a). Otherwise n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@. By O-visibility, n423

points in xt′y, thus by the I.H., it must belong to the same thread as all the nodes in xt′y424

and in particular to the thread of t′ω. Therefore both (i) and (ii) hold.425

1.3.4. Traversal core426

Occurrences of input-variable nodes correspond to point of the computation at which427

the term interacts with its context. At these points, a traversal can be extended in a428

non-deterministic way. In contrast, after a node that is hereditarily enabled by an @-node429

or by a constant node, the next visited node is uniquely determined. We can therefore430

think of such nodes as being “internal” to the computation: their semantics is predefined431

and cannot be altered by the context in which the term appears. If we want to extract432

the essence of the computation from a traversal, a natural way to proceed thus consists in433

keeping only occurrences of nodes that are hereditarily enabled by the root:434

Definition 1.15. The core of a traversal t, written t � ~, is defined as t � V ~` (i.e.,
the subsequence of t consisting of the occurrences of nodes that are hereditarily enabled
by the root ~ of the computation tree). The set of traversal cores of M is denoted by
T rav(M)�~:

T rav(M)�~ def
= {t � ~ : t ∈ T rav(M)} .

Example 1.6. The core of the traversal given in example 1.4 is:

t � λfz = λfz · f · λ · z .

Remark 1.5435

• The root occurs at most once in a traversal, therefore if t is a non-empty traversal
then its core is given by t � r where r denotes the only occurrence of ~ in t. Thus
we have:

T rav(M)�~ = {t � r : t ∈ T rav(M) and r is the only occurrence of ~ in t} .

• Since @-nodes and Σ-constants do not have pointers, the traversal cores contains436

only nodes in Vλ ∪ Vvar.437

1.3.5. Removing @-nodes and Σ-nodes from traversals438

Application nodes are essential in the definition of computation trees: they are necessary439

to connect together the operator and operands of an application. They also have another440

advantage: they ensure that the lambda-nodes are all at even level in the computation441

tree, which subsequently guarantees that traversals respect a certain form of alternation442

between lambda nodes and non-lambda nodes. Application nodes are however redundant443
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in the sense that they do not play any role in the computation of the term. In fact it will444

be necessary to filter them out in order to establish the correspondence with interaction445

game semantics.446

Definition 1.16 (@-free traversal). Let t be a traversal of τ(M). We write t−@ for the447

sequence of nodes-with-pointers obtained by448

• removing from t all occurrences of @-nodes and their children value-leaves;449

• replacing any link pointing to an @-node by a link pointing to the immediate prede-450

cessor of @ in t.451

Suppose u = t−@ is a sequence of nodes obtained by applying the previously defined452

transformation on the traversal t, then t can be partially recovered from u by reinserting453

the @-nodes as follows. For each @-node in the computation tree with parent node denoted454

by p, we perform the following operations:455

1. replace every occurrence of the pattern p · n for some λ-node n, by p ·@ · n;456

2. replace any link in u starting from a λ-node and pointing to p by a link pointing to457

the inserted @-node;458

3. for each occurrence in u of a value-leaf vp pointing to p, insert the value-leaf v@459

immediately before vp and make it point to the immediate successor of p (which is460

precisely the @-node inserted in step 1.).461

We write u+ @ for this second transformation.462

These transformations are well-defined because in a traversal, an @-node is always463

immediately preceded by its parent node n1, and immediately followed by its first child n2:464

n1

@

n2

465

Example 1.7. Let f be a Σ-constant and t = λξ ·@ · λx · f · λ · x. Then

t−@ = λξ · λx · f · λ · x .

Example 1.8. Let t be the traversal given in example 1.4, we have:

t−@ = λfz · λuv · u · λy f · λ · y · λ · v · λ · z .
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We also want to remove Σ-nodes form the traversals. To that end we define the opera-466

tion −Σ and +Σ in the exact same way as −@ and +@. Again these transformations are467

well-defined since in a traversal, a Σ-node f is always immediately preceded by its parent468

node p, and a value-node vp is always immediately preceded by a value-node vf .469

Note that the operations −@ and −Σ are commutative: (t−@)− Σ = (t− Σ)−@.470

Lemma 1.7. For every non-empty traversal t = t′ · tω in T rav(M):

(t−@) + @ =

{
t, if tω 6∈ V@ ;
t′, if tω ∈ V@ ;

(t− Σ) + Σ =

{
t, if tω 6∈ VΣ ;
t′, if tω ∈ VΣ .

Proof. The result follows immediately from the definition of the operation -@ and +@471

(resp. −Σ and +Σ ).472

Remark 1.6 Sequences of the form t−@ (resp. t− Σ) are not, strictly speaking, proper473

justified sequences of nodes since after removing @-nodes, all the prime λ-nodes become474

justified by their parent’s parent which are also λ-nodes! Moreover, these sequences do not475

respect alternation since two λ-nodes may become adjacent after removing a @-node.476

We write t? to denote the sequence obtained from t by removing all the @-nodes as well
as the constant nodes together with their associated value-leaves:

t?
def
= t−@− Σ .

Example 1.9. Let f be a Σ-constant. We have

(

λξ ·@ · λx · f · λ · x
)?

= λξ · λx · λ · x .

We introduce the set

T rav(M)? = {t? | t ∈ T rav(M)} .

Remark 1.7 If M is a β-normal term and if it contains no Σ-constant (as for pure477

simply-typed terms) then τ(M) does not contain any @-node or Σ-node, thus all nodes are478

hereditarily enabled by ~ and we have T rav(M) = T rav(M)�~ = T rav(M)?.479

Lemma 1.8. For every traversal t we have t? � V ~` = t � ~.480

Proof. This is because nodes removed by the operation ? are not hereditarily enabled by481

the root of the tree.482
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The notion of P-view extends naturally to sequences of the form t?: it is defined by483

the same induction as for P-views of traversals. It is then easy to check that if tω is not in484

L@ ∪ LΣ then the P-view of t? is obtained from ptq by keeping only the non @/Σ-nodes:485

pt?q = ptq \ (V@ ∪ VΣ) . (1)

We define a projection operation for sequences of the form t? as follows:486

Definition 1.17. Let t be a traversal such that tω 6∈ L@ ∪ LΣ and r0 be an occurrence487

of some lambda-node n. Then the projection t? � V (n) is defined as the subsequence of t?488

consisting of nodes of V (n) only. If a variable node loses its pointer in t? � V (n) then its489

justifier is reassigned to the only occurrence of n in pt?q.490

Note that this operation is well-defined. Indeed if a variable x loses its pointer in491

t? � V (n) then it means that x is free in M (n). But then n must occur in the path to the492

root ~ which is precisely pt6xq. Thus by (1), n must occur in pt6x
?q.493

1.3.6. Subterm projection (with respect to a node occurrence)494

Let n0 be a node-occurrence in a traversal t. The subterm projection t �� n0 is495

defined as the subsequence of t consisting of the occurrences whose P-view at that point496

contain the node n0. Formally:497

Definition 1.18. Let t ∈ T rav(M) and n0 be an occurrence in t. The subsequence t �� n0498

of t is defined inductively on t as follows:499

• (t · n0) �� n0 = n0 ;500

• If n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ and n 6= n0 then

(t · n) �� n0 =

{
(t �� n0) · n, if n’s justifier appears in t �� n0 ;
t �� n0, otherwise ;

• If n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ and n 6= n0 then

(t · n) �� n0 =

{
(t �� n0) · n, if tω’s appears in t �� n0 ;
t �� n0, otherwise ;

where in the first subcase, if n loses its justifier in t �� r0 then it is reassigned to r0.501

We call this transformation the subterm projection with respect to a node occurrence502

because it keeps only nodes that appear in the sub-tree rooted at some reference node. If503

n0 is an occurrence of a lambda node n ∈ Nλ then we say that t �� n0 a sub-traversal504

of the computation tree τ(M). This name is suggestive of the forthcoming Proposition505

1.5 stating that t �� n0 is a traversal of the sub-computation tree of τ(M) rooted at n.506

Remark 1.8 There is an alternative way to define t �� r0: For every traversal t we write
t+ to denote the sequence-with-pointers obtained from t by adding pointers as follows: For
every occurrence of a @ or Σ-node m in t we add a pointer going from m to its predecessor
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in t (which is necessarily an occurrence of its parent node). Further, for every variable node
x we add auxiliary pointers going to each lambda node occurring in the P-view at that
point after x’s binder. Conversely, for every sequence-with-pointers u we define u− as the
sequence obtained from u by removing the links associated to @ and Σ-nodes and where
for each occurrence of a variable node, only the “longest” link is preserved. (The length of
a link being defined as the distance between the source and the target occurrence.) Clearly
the operation − is the inverse of +: For every traversal t we have t = (t+)−. Then it
can be easily shown that the sequence t �� n is precisely the subsequence of t consisting of
nodes hereditarily justified by n with respect to the justification pointers of t+:

t �� n = (t+ � n)− .

(Note that since the operation + changes the justification pointers, the hereditary justi-507

fication relation in a traversal t is different from the hereditary justification relation in t+508

and therefore we have (t � n)+ v t+ � n but (t � n)+ 6= t+ � n.) End of remark.509

The following lemmas follow directly from the definition of t �� r0:510

Lemma 1.9. Let t be a traversal and r0 be an occurrence of a lambda node r′ in t.511

(a) Suppose that t = . . .m . . . n with n ∈ Nλ ∪L@ ∪LΣ ∪Lvar and n 6= r0. Then n appears512

in t �� r0 if and only if m appears in t �� r0.513

(b) Suppose that t = . . . · n where n ∈ Nvar ∪ N@ ∪ NΣ ∪ Lλ. Then n appears in t �� r0 if514

and only if the last lambda node in ptq does.515

(c) Suppose that t = . . .m . . . vm with vm ∈ L = Lλ ∪ L@ ∪ LΣ ∪ Lvar. Then vm appears in516

t �� r0 if and only if m does.517

Proof. (a) holds by definition of t �� r0. (b) is proved by induction on t: It follows easily518

from the fact that in the definition of t �� r0, the inductive cases follow those from the519

definition of traversal P-views. (c) If vm ∈ L@ ∪ LΣ ∪ Lvar then it falls back to (a).520

Otherwise vm ∈ Lλ and by (b), vm appears in t �� r0 if and only if the last lambda node in521

ptq does. But the last node in ptq is necessarily m (since vm is necessarily visited with a522

copy-cat rule).523

Lemma 1.10. Let t ∈ T rav(M) and r0 be the occurrence in t of a λ-node. We have:

?(t �� r0) = ?(t) �� r0 .

Proof. Take a prefix u of t ending with a value-leaf vn of an occurrence n. By Lemma524

1.9(c), the operation �� r0 removes vn from t if and only if it also removes n.525
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1.3.7. O-view and P-view of the subterm projection526

P-view projection.527

Lemma 1.11 (P-view Projection for traversals). Let t be a traversal and r0 be an occur-528

rence in t of a lambda node r′ ∈ Nλ. Then:529

(i) If tω appears in t �� r0 then:530

a. r0 appears in ptq, all the nodes occurring after r0 in ptq appear in t �� r0 and531

all the nodes occurring before r0 in ptq do not appear in t �� r0;532

b. pt �� r0q
M (r′)

= ptqM>r0 = r0 · . . .;533

c. if tω also appears in t �� r1 for some occurrence r1 r
′ then r0 = r1;534

d. if t = . . . m . . . n and m does not appear in t �� r0 then r0 occurs after m in t535

and m is a free variable node in the sub-computation tree τ(M (r′)).536

(ii) Suppose t = . . . r0 . . .m . . . n. Then the node n appears in t �� r0 if and only if m537

does.538

Proof. (i) A trivial induction shows both a. and b.(̇The inductive steps in the definition539

of the projection operation �� r0 correspond precisely to those from the definition of540

P-views.)541

c. By a., both r0 and r1 appears in the P-view. But the P-view is the path from tω to542

the root, hence it cannot contain two different occurrences of the same node r′.543

d. Since tω appears in t �� r0 and its justifier m is not in t �� r0, by a., the justifier m544

necessarily precedes r0 in t, and by Lemma 1.9, n is necessarily a variable node. Thus m545

occurs before r0 in the P-view ptq. In other words, r0 lies in the path from n to its binder546

m. Consequently, n is a free variable node in τ(M (r′)).547

(ii) The case n 6∈ Nvar is handled by Lemma 1.9(a) and (c).548

Suppose that n ∈ Nvar. If n appears in t �� r0 then by (i) all the nodes occurring in ptq549

up to r0 appear in t �� r0. By P-visibility, m appears in ptq and since r0 precedes it by550

assumption, m also appears in t �� r0. If m appears in t �� r0 then since m appears in the551

P-view at x, by definition of t �� r0, x must also appear in t �� r0.552

Lemma 1.12. Let t ∈ T rav(M) such that tω 6∈ Lλ. Let r′ be some lambda node in Nλ.553

The node tω belongs to the subtree of τ(M) rooted at r′ (i.e., tω ∈ V (r′)) if and only if554

tω appears in t �� r0 for some occurrence r0 of r′ in t.555

Proof. Only if part: Since t’s last move in not a lambda leaf, by Proposition 1.1, the P-view556

ptq is the path to the root ~. Hence since tω belongs to the subtree of τ(M) rooted at r′,557

ptq must contain (exactly) one occurrence r0 of r′. But then by definition of t �� r0, all the558

nodes following r0 occurring in the P-view must also belong to t �� r0, so in particular, tω559

does.560

If part: By Lemma 1.11(i), r0 must occur in ptq and therefore r0 lies in the path from561

tω to the root ~ of the computation tree τ(M). Consequently, tω necessarily belongs to562

the subtree of τ(M) rooted at r′.563
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Lemma 1.13. Let t be a traversal and r0 be an occurrence in t of some lambda node r′.564

Then an occurrence n 6∈ V@ ∪ VΣ of t is hereditarily justified by n0 in t? � V (r′) if and only565

if n appears in t �� r0.566

Proof. We proceed by induction on t6n. If n = r0 or if r0 does not occur in t6n then the567

result holds trivially. Suppose that r0 occurs in t<n. Let m be n’s justifier in t. We do a568

case analysis on n. The case n ∈ L@ ∪ LΣ ∪N@ ∪NΣ is excluded by assumption.569

Suppose n ∈ Lλ ∪ Lvar ∪Nλ then

n appears in t �� r0 ⇐⇒ m appears in t �� r0 by Lemma 1.9(a)

⇐⇒ m her. just. by n0 in t? � V (r′) by I.H. on t6m

⇐⇒ n her. just. by n0 in t? � V (r′) since m is n’s parent in τ(M (r′)).

Suppose that n ∈ Nvar then

n appears in t �� r0 ⇐⇒ r0 appears in ptq by Lemma 1.12 and 1.11(i)

⇐⇒

{
r0 precedes m in ptq, and thus n is a bound variable in M (r′)

or r0 appears strictly after m in ptq and n is free in M (r′)

⇐⇒

{
m appears in t �� r0 by Lemma 1.11(i)

or n points to r0 in t? � V (r′) by def. of � V (r′)

⇐⇒

{

m her. just. by n0 in t? � V (r′) by I.H. on t6m
or n points to r0 in t? � V (r′)

⇐⇒

{

n her. just. by n0 in t? � V (r′) n is in V (r′) iff its binder m is
or n points to r0 in t? � V (r′)

⇐⇒ n is her. just. by n0 in t? � V (r′) .

Lemma 1.14. Take a traversal t. Let r′ be a node in Nλ and r0 an occurrence of r′ in t.570

Suppose that tω appears in t �� r0 and that the thread of tω is initiated by α ∈ N@ ∪NΣ.571

(i) If r0 precedes α in t then all the nodes occurring in the thread appear in t �� r0.572

(ii) If α precedes r0 in t then tω is hereditarily enabled by r′ in τ(M (r′)).573

Proof. (i) By definition of a thread, the nodes occurring in the thread are all hereditarily574

justified by α. Since r0 precedes α and tω appears in t �� r0, by Lemma 1.11(ii) all the575

nodes in the thread must also appear in t �� r0.576

(ii) Let q be the first node in t that hereditarily justifies tω in t and that appears in577

t �� r0.578

If q ∈ Nλ then necessarily q = r0. Otherwise by definition of �� r0, q’s justifier also579

appears in t �� r0 which contradicts the definition of q. Hence the result holds trivially.580

If q ∈ N@∪NΣ then necessarily q = α, since links always point inside the current thread581

and since a thread contains by definition only one node in N@ ∪ NΣ. But α precedes r0582

therefore α cannot be hereditarily justified by r0 hence this case is not possible.583

If q ∈ Nvar then by Lemma 1.11(i.d), q is an free variable in τ(M (r′)) and therefore584

it is enabled by r′ in τ(M (r′)). Hence since tω is hereditarily justified by r0, it must be585

hereditarily enabled by r′ in τ(M (r′)).586
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O-view projection. In this paragraph we will spend some time proving the following Propo-587

sition:588

Proposition 1.2 (O-view projection for traversals). Let t be a traversal of T rav(M) such589

that its last node appears in t �� r0 for some occurrence r0 in t of a lambda node r′ in Nλ.590

Then xtyM �� r0 v xt �� r0yM (r′).591

One may recognize that this result bears resemblance with another non trivial result592

of game semantics from the seminal paper by Hyland and Ong on full abstraction of PCF593

[6]:594

Proposition 1.3 (P-view projection in game semantics). [6, Prop.4.3] Let s be a legal595

position of a game A→ B. If sω is in B then psqA→B � B v ps � BqB.596

Since such result is relatively hard to prove, it would be nice if we could just reuse597

the above proposition to show our result. Unfortunately, the two settings are not exactly598

analogues of each other so we cannot immediately deduce one proposition from the other.599

Indeed, the proof of the previous proposition relies on several properties of a legal position600

s [6]:601

• (w1) Initial question to start: The first move played in s is an initial move and there602

is no other occurrence of initial moves in the rest of s;603

• (w2) Alternation: P-moves and O-moves alternate in s;604

• (w3) Explicit justification: every move, except the first one, has a pointer to a605

preceding move,606

• (w4) Well-bracketing: The pending question is answered first;607

• (w5) Visibility: s satisfies P-visibility and O-visibility.608

Also, further assumptions are made on the legal positions of the game A→ B:609

• (w6) For every occurrence n in the position, n ∈ A ⇐⇒ n 6∈ B;610

• (w7) Switching condition: The Proponent is the only player who can switch from611

game A to B or from B to A.612

• (w8) Justification in A→ B: Suppose m justifies n in s. Then613

– n ∈ B implies m ∈ B;614

– if n is a non-initial move in A the n ∈ A;615

– if n is an initial move in A the n ∈ B.616
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Most of these requirements coincide with properties that we have already shown for traver-617

sals. However traversals do not strictly satisfy explicit justification since there are some618

nodes—the @-nodes and Σ-nodes—that do not have justification pointers. The solution619

to this problem is simple: we just add justification pointers to @-nodes and Σ-nodes!620

Take a justified sequence of nodes t. We define ext(t), the extension of t, to be the621

sequence of nodes-with-pointers obtained from � · t (where � is a dummy node) by adding622

justification pointers going from occurrences of the root ~, @-nodes and Σ-nodes to their623

immediate predecessor in t.624

Example 1.10. Let f ∈ Σ. We have ext(λξ ·@ · λx · f · λ · x) = � · λξ ·@ · λx · f · λ · x.625

It is an immediate fact that for every two justified sequences t1 and t2 we have:626

ext(t1) v ext(t2) ⇐⇒ t1 v t2 (2)

and for every justified sequence t:627

ext(t) �� r0 = ext(t �� r0) . (3)

Since a traversal extension ext(t) may contain @/Σ-nodes with pointers, it is not a
proper justified sequence of nodes as defined in Def. 1.6. Nevertheless, the basic trans-
formations that we have defined for justified sequences—such as hereditary projection,
P-view and O-view—apply naturally to traversal extensions (without any modification
in their definition). The views of a traversal extension can be expressed in term of the
traversal’s views as follows:

xext(t)y = xty (4)

pext(t)q =

{
ε, if t = ε ;
� · ext(ptq), otherwise.

(5)

The transformations p q and x y, however, do not convey the appropriate notion of628

view for extended traversals. We define an alternative notion of view more appropriate to629

traversal extensions, called O-e-view and P-e-view, as follows:630

Definition 1.19. The O-e-view of a traversal extension ext(t), written, xext(t)ye is defined
as

xext(t)ye
def
= pext(t)q .

The P-e-view of ext(t), written, xext(t)ye is defined by induction:

pεqe = ε
pu · nqe = puqe · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;

pu ·m · . . . · nqe = puqe ·m · n for n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ .
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Inserting a dummy node � at the beginning of the traversal changes the parity of the631

alternation between nodes in Nvar ∪ Lλ ∪ N@ ∪ NΣ and Nλ ∪ Lvar ∪ LΣ ∪ L@. Thus the632

role of O and P is interchanged for traversal extensions. This explains why the O-e-view633

is calculated from the P-view.634

For the P-e-view, the definition is almost the same as the traversal O-view x y except635

that the computation does not stop when reaching a node in N@ ∪NΣ—this is sometimes636

referred as the long O-view [7]. (The O-view contains only one thread whereas the long-637

O-view may contain several; the O-view is a suffix of the long O-view.) This is possible638

because occurrences of nodes from N@ ∪NΣ in a traversal extension all have a justification639

pointer. The O-view of t is a suffix of its P-e-view:640

ptqe = w · xty for some sequence w. (6)

641

We are now fully equipped to establish an analogy between the traversal extension642

setting and the game-semantic setting. The reason why we make this analogy is purely643

to reuse the proof of Proposition 1.3 [6, Prop. 4.3]. The reader must not confuse it with644

another correspondence that we will establish in a forthcoming section, between plays645

of game semantics and traversals of the computation tree. (In particular the colouring646

of nodes used here in term of P-move/O-move is the opposite of the one used in the647

Correspondence Theorem.) The following analogy is made:648

Traversal setting Game-semantic setting

Extended traversal ext(t) Play s
Nodes in n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ ∪ {�} O-moves  

Nodes in n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ P-moves #

P-view pext(t)qe P-view psq
O-view xext(t)ye O-view xsy

Occurrence n appearing in t �� r0 Occurrence n ∈ B
Occurrence n not appearing in t �� r0 Occurrence n ∈ A

No notion of initiality (All nodes
are considered to be non-initial).

Distinction between initial and
non-initial move.

649

Clearly sequences of the form ext(t) satisfy the requirements (w1) to (w5): For (w1),650

the initial node becomes �. Explicit justification (w4) holds since we have added pointers651

to @/Σ-nodes. Finally, alternation (w3), well-bracketing (w4) and visibility (w5) of the652

traversal t (Prop. 1.1) are preserved by the extension operation (where visibility is defined653

with respect to the appropriate notion of P-view and O-view).654

The property (w6) trivially holds: n ∈ t �� r0 iff ¬(n 6∈ t �� r0). So does the switching655

condition (w7): if t = . . . ·m ·n where n ∈ Nvar∪Lλ∪N@∪NΣ and m ∈ Nλ∪Lvar∪LΣ∪L@656

then, by definition of t �� r0, m appears in t �� r0 if and only if n does. For (w8): Using the657

analogy of the preceding table and since all nodes are considered “non-initial” in ext(t),658

this condition can be stated as:659

(w8) Suppose m justifies n in ext(t). Then n ∈ t �� r0 if and only if m ∈ t �� r0.660
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Unfortunately, as we have seen previously, the direct implication does not hold in general!661

(Indeed, a variable node can very well appear in t �� r0 even though its justifier does not.)662

Consequently, the proof of Proposition 1.3 cannot be directly reused in our setting. A663

weaker version of condition (w8) holds however: if r0 occurs before n’s justifier then, by664

Lemma 1.11(i), n appears in t �� r0 if and only if its justifier does; this condition turns out665

to be sufficient to reuse most of the proof of Proposition 1.3 [6].666

We reproduce here some definition used in this proof. Let s be a position of the game667

A→ B. A bounded segment is a segment θ of s of the form
x
# . . .

y
 . If x is in A, and hence668

so does y, then θ is an A-bounded segment. Respectively if x and y are in B then it is a669

B-bounded segment. By an abuse of notation we define pθ � Bq to be the subsequence of670

ps6y � Bq consisting only of moves in θ appearing after (and not including) x.671

We then have:672

Lemma 1.15. [6, Lemma A.3] Let θ be an A-bounded segment in s with end-moves x and673

y.674

(i) pθ � Bq =
pr
# ·

qr
 . . .

p1
# ·

q1
 for some r ≥ 0. Note that each segment pi . . . qi is B-bounded675

in s, for 1 ≤ i ≤ r.676

(ii) For every P-move m in θ which appears in xs<yy, m does not belong to any of the677

B-bounded segments pi . . . qi for 1 ≤ i ≤ r.678

This lemma assumes that the segment θ satisfies the assumptions (w1) to (w8). As we679

have seen, (w8) does not always hold for extended traversals. But using our analogy with680

extended traversals, a segment θ is “A-bounded” if θ is bounded by two nodes appearing681

in t �� r0. This can only happen if r0 occurs before θ in t or if θ’s left bound is r0. Thus682

the condition (w8) holds at least for the nodes of the segment θ. The previous lemma thus683

translates into:684

Lemma 1.16. Let t be a traversal and θ be a segment of ext(t) bounded by nodes x and y685

appearing in t �� r0.686

(i) pθ �� r0q
e = pr · qr . . . p1 · q1 for some r ≥ 0 where pi ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ and687

qi ∈ Nvar ∪ Lλ ∪N@ ∪NΣ, for 1 ≤ i ≤ r.688

(ii) For every node m in Nλ∪Lvar∪LΣ ∪L@ occurring in θ and appearing in xext(t)<yye,689

m does not belong to any of the segments pi . . . qi for 1 ≤ i ≤ r.690

We now show the analogue of Proposition 1.3 in the context of extended traversals:691

Proposition 1.4. Let t be a traversal and r0 be an occurrence of some lambda node r′. If692

ext(t)’s last node appears in t �� r0 then pext(t)qe �� r0 v pext(t �� r0)q
e.693

Proof. By (3) we can equivalently show that: pext(t)qe �� r0 v pext(t) �� r0q
e. By induction694

on the length of t. The base case is immediate. For the inductive case, we do a case analysis:695
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• t = t′ · r0. We have ext(t) �� r0 = r0 and pext(t)qe �� r0 = r0 = pext(t) �� r0q
e.696

• t = t′ · n with n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ where n is not the occurrence r0.697

There are two cases.698

– Suppose that the last node in t′ appears in t �� r0. Then by the I.H. we have
pext(t′)qe �� r0 v pext(t′) �� r0q

e thus

pext(t)qe �� r0 = pext(t′)qe �� r0 · n (P-view for extended justified
sequences of nodes of M)

v pext(t′) �� r0q
e · n (induction hypothesis)

= pext(t′) �� r0 · nqe (P-view for extended justified
sequences of nodes of M (r′), n belongs

to V (r′) by Lemma 1.12)

= pext(t′ · n) �� r0q
e (n occurs in t �� r0)

= pext(t) �� r0q
e (definition of t).

– Suppose that the last node y1 in t′ does not appear in t �� r0. Let m be the last
node preceding m in pext(t)qe that appears in t �� r0. Then for some q ≥ 0 we
have

pext(t)qe = pext(t)6mqe · xq · yq . . . x1 · y1
︸ ︷︷ ︸

all appear in t �� r0 ·m

where the xis are in Nλ∪Lvar ∪LΣ ∪L@ and the yis are in Nvar ∪NΣ ∪N@ ∪Lλ.699

Therefore the sequence ext(t) must be of the following form:

ext(t)6m · xq . . . yq
︸ ︷︷ ︸

θq

· · · x1 · · · y1
︸ ︷︷ ︸

θ1

· m

where each segment θi is bounded by nodes appearing in t �� r0. By Lemma
1.16, when computing the P-view of ext(t), pointers going from a segment θ to
a node outside the segment are never followed! In other words:

pext(t) �� r0q
e = pext(t)6m �� r0q

e · pθq �� r0q
e · · · · · pθ1 �� r0q

e ·m .

Hence:

pext(t)qe �� r0 = pext(t)6mqe �� r0 · n

v pext(t)6m �� r0q
e · n (I.H.)

v pext(t)6m �� r0q
e · pθq �� r0q

e · · · · · pθ1 �� r0q
e · n

= pext(t) �� r0q
e (by the previous equation).
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• t = t′ ·m · u · n where n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ. We have m ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@.700

Suppose that r0 appears in t′ ·m, then since n appears in t �� r0, by Lemma 1.11(i)
so does m. Thus we can apply the I.H. on t′ ·m:

pext(t)qe �� r0 = pext(t′) ·m · u · nqe
M �� r0 (definition of t)

= (pext(t′) ·mqe · n) �� r0 (P-eview computation in M )

= pext(t′ ·m)qe �� r0 · n (n appears in t �� r0)

v p(ext(t′ ·m)) �� r0q
e · n (induction hypothesis on t′ ·m)

= pext(t′) �� r0 ·mqe · n (m appears in t �� r0)

= pext(t′) �� r0 ·m · (ext(u) �� r0) · nqe (P-eview in M (r′), nodes in
m · (ext(u) �� r0) · n are all in

V (r′))

= p(ext(t′) ·m · ext(u) · n) �� r0q
e (m and n both appear in t �� r0)

= pext(t) �� r0q
e (definition of t).

Suppose that r0 appears in u then:

pext(t)qe �� r0 = pext(t′ ·m)qe �� r0 · n

= n (r0 occurs after m)

v p(ext(t′ ·m)) �� r0q
e · n

= pext(t) �� r0q
e .

We can now prove Proposition 1.2:701

Proof of Proposition 1.2. We have:

xty �� r0 = xext(t)y �� r0 by (4)

v pext(t)qe �� r0 by (6)

v pext(t �� r0)q
e by Proposition 1.4

= w · xext(t �� r0)y for some w, by (6)

= w · xt �� r0y by (4).

Thus xty �� r0 v w · xt �� r0y. But by definition of the operator ��, both xty �� r0 and702

xt �� r0y start with the occurrence r0, we thus have xty �� r0 v xt �� r0y.703

Example 1.11. Take ϕ : 2, e : o ` ϕ(λx.(λψ.ϕ(λx′.(λy.ψ(λz.z))(ϕ(λx′′.x′))))(λu.ue)).704

The computation tree is represented below together with an example of traversal t:705
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λ

ϕ

λx

@

λψ

ϕ

λx′

@

λy

ψ

λz

z

λ

ϕ

λx′′

x′

λu

u

λ

e

t = λ ϕ λx @ λψ ϕ λx′ @ λy ψ λu u λz z λ

xty = @ λψ ψ λu u λz z λ

xty �� r0 = λψ ψ λz z

t �� r0 = λψ ϕ λx′ @ λy ψ λz z

xt �� r0y = λψ ψ λz z .

706

Example 1.12. Take the term-in-context:

e : o ` (λfg.f(λb.f(λb′.b)(λa′.a′e))(λa.ae))(λxy.y(λh.x(he))e)e .

Take the traversal:

t = λ @ λfg f λxy y λa a λh x λb f λxy y λa′ a′ λh x λb′ b λ h

then we have the following relations:707

λ

@

λfg

f

λb

f

λb′

b

λa′

a′

λ

e

λa

a

λ

e

λxy

y

λh

x

λ

h

λ

e

λ

e

λ

e

xty = @ λfg f λxy y λa a λh h

xty �� r0 = λfg f λa a

t �� r0 = λfg f λa a λb f λa′ a′ λb′ b

xt �� r0y = λfg f λa a λb b .

708

1.3.8. Subterm projections are sub-traversals709

We now show an important result that relies on all the lemmas and propositions from710

the previous two sections:711
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Proposition 1.5 (Subterm projections are sub-traversals). Let t ∈ T rav(M). For every712

occurrence r0 in t of some lambda node r′ ∈ Nλ we have t �� r0 ∈ T rav(M
(r′)).713

Proof. We proceed by induction on the traversal rules. The base cases (Empty) and (Root)714

are trivial. Step case: Take a traversal t ∈ T rav(M) and suppose that the result holds for715

every traversal shorter than t.716

Suppose that tω does not appear in t �� r0 then the result follows by applying the717

induction hypothesis on the immediate prefix of t. Suppose that tω appears in t �� r0 then718

we do a case analysis on the last traversal rule used to form t:719

• (Lam) We have t = t′ · n with t′ = . . . · λξ. By the induction hypothesis, t′ �� r0 ∈720

T rav(M (r′)).721

Since n is a variable node appearing in t �� r0, by definition of t �� r0 its immediate722

predecessor λξ must occur in t �� r0 and therefore must be the last occurrence in t′ �� r0.723

Thus we can use the rule (Lam) in τ(M (r′)) to produce the traversal u = (t′ �� r0) · n of724

M (r′).725

We have t �� r0 = (t′ �� r0) ·n, but in order to state that u = t �� r0 it remains to prove that726

n has the same link in t �� r0 and in u.727

Suppose n ∈ N@ ∪ NΣ then n has no justifier in both u and t �� r0. Otherwise n ∈ Nvar.728

Let mu denote the occurrence in t of n’s justifier in u, mt for the occurrence in t of n’s729

justifier in t, and m for the occurrence in t of n’s justifier in t �� r0. We want to show that730

mu = m. By the rule (Var), mu is defined as the only occurrence of n’s enabler in pt′ �� r0q731

and mt is the only occurrence of n’s enabler in pt′q.732

If r0 occurs before mt then by Lemma 1.11(ii), mt appears in t �� r0 thus by definition of733

�� we have m = mt. Moreover, since mt appears in t �� r0, it must appear after r0 by734

Lemma 1.11(i.a), thus since it is in the P-view at t′, it must be in ptq>r0 which is equal to735

pt′ �� r0q by Lemma 1.11(i.b). Hence we necessarily have mu = mt (since r′ occurs only736

once in the P-view pt′ �� r0q).737

If r0 occurs after mt then mt does not appear in t �� r0 thus m = r0 by definition of ��.738

Moreover by Lemma 1.11(i), n’s binder occurs in the path from r′ to the root ~. Thus n739

is a free variable in τ(M (r′)) and consequently the only enabler of n occurring in pt′ �� r0q740

is necessarily r0: mu = r0.741

This proves the equality t �� r0 = u and thus t �� r0 is a valid traversal of M (r′).742

• (App) t = . . . · λξ · @ · n. Since n appears in t �� r0, so does @ (by definition of743

t �� r0). Hence @ is the last occurrence in t′ �� r0. By the induction hypothesis, t′ �� r0744

is a traversal of τ(M (r′)) therefore we can use the rule (App) in τ(M (r′)) to produce the745

traversal (t′ �� r0) · n = t �� r0 of M (r′).746

• (Value@ 7→λ) Take t = t′ · λξ ·@ . . . v
v

@ · v

v

λξ.747

The occurrence vλξ appears t �� r0 therefore since r0 is not a lambda node, its justifier λξ748

also appears in t �� r0. Moreover since @ and v@ are hereditarily justified by λξ, they must749

also appear in t �� r0.750

By the induction hypothesis t′ �� r0 is a traversal of τ(M (r′)) therefore since the occurrence751

λξ, @, v@, vλξ all appear in t �� r0 we can use the rule (Value@ 7→λ) in M (r′) to form the752

traversal (t′ �� r0) · n = t �� r0 of M (r′).753
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• (Valueλ7→@) Take t = t′ ·@ · λz . . . v
v

λz · v

v

@. Again, since v@ appears in t �� r0, nec-754

essarily the occurrences @, λz, vλz and v@ must all appear in t �� r0. Hence using the755

induction hypothesis and the rule (Valueλ7→@) in M (r′) we obtain that t �� r0 is a traversal756

of M (r′).757

• (Valuevar 7→λ) Take t = t′ · λξ · x . . . v
v

x · v

v

λξ. Since vλξ is in t �� r0, so must be x, vx and758

λξ, by definition of t �� r0. Hence we can use the I.H. to form the traversal t �� r0 of M (r′).759

• (InputValue) Take t = t1 · x · t2 · vx
v

for some v ∈ D where x is the pending node in760

t1 · x · t2 and x ∈ N~`
var . Since vx appears in t �� r0, so does x hence by Lemma 1.10, x is761

also the pending node in (t1 · x · t2) �� r0. Furthermore since M (r′) is a subterm of M , x is762

necessarily an input-variable node in τ(M (r′)). Hence we can conclude using the I.H. and763

the rule (InputValue).764

• (InputVar) Take t = t′ · n where n ∈ Nλ points to an occurrence of its parent node765

y ∈ N~`
var in xty. By Lemma 1.9(a), y must also appear in t �� r0, therefore y also occurs in766

xt �� r0y v xty �� r0. Hence we can conclude using the rule (InputVar) in M (r′).767

• (Var) Take t = t′ · p · λx . . . xi
i

· ληi

i

for some variable xi in N@`
var . If ληi is the occur-768

rence r0 then the traversal t �� r0 = r0 can be formed using the rule (Root).769

Suppose that ληi is not the occurrence r0. Then both ληi and its justifier p must appear770

in t �� r0. The nodes λx and xi, however, do not necessarily appear in t �� r0.771

Consider the node @ that initiates the thread of ληi.772

– Suppose that r0 precedes @ in t then by Lemma 1.14(i), the nodes ληi, p, λx and773

xi as well as @ all appear in t �� r0. Moreover since @ appear in t �� r0, it must be774

an occurrence of an application node that appear in the subtree rooted at r′ thus775

@ ∈ N r′`
var . Hence we can use the use the rule (Var) in M (r′) to form the traversal776

t �� r0 of M (r′).777

– Suppose that @ precedes r0 in t then by Lemma 1.14(ii), p is necessarily an input778

variable node in τ(M (r′)). We have p ∈ xty �� r0 v xt �� r0y by Proposition 1.2.779

Furthermore we can easily check (by alternation and using the fact that if an occur-780

rence in Nλ ∪ Lvar ∪L@ ∪LΣ ∪N@ ∪NΣ appears in t �� r0 then so does its immediate781

successor) that the penultimate node in t �� r0 is necessarily in Nvar ∪ Lλ. Hence we782

can make use of the rule (InputVar) in M (r′) (in its alternative form) to produce the783

traversal t �� r0 of M (r′).784

• (Valueλ7→var) Take t = t′ · y · λξ . . . v
v

λξ · v

v

y for some variable y in N@`
var . The proof is785

similar to the previous case using the rule (InputValue) instead of (InputVar) in the second786

subcase.787

• (Σ)/(Σ-var) The proof is similar to the case (App) and (Var).788

• (Σ-Value) The proof is similar to the case (Valueλ7→var).789

The following Lemma will be useful to prove the Correspondence Theorem:790

Lemma 1.17. Let t be a traversal and r0 be an occurrence of a lambda node r′. We have

(t �� r0)
? = t? � V (r′) � r0 .
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Proof. By the previous Lemma, t �� r0 is indeed a traversal (of τ(M (r′))) thus the expression791

“(t �� r0)
?” is well-defined. We show the result by induction on t: It is true for the empty792

traversal. Take t = t′ · n.793

If n belongs to V@ ∪ VΣ then

((t′ · n) �� n0)
? = (t′ �� n0)

? ·

{
n, if n appears in t �� n0;
ε, otherwise.

and ((t′ · n)? � V (r′)) � n0 = (t′? � V (r′)) � n0 ·

{
n, if n is her. just. by n0 in t? � V (r′);
ε, otherwise.

Since tω 6∈ V@∪VΣ, by Lemma 1.13 we have that n is hereditarily justified by n0 in t? � V (r′)
794

if and only if n appears in t �� n0. Hence we can conclude using the I.H. on t′.795

If n does not belong to V@ ∪ VΣ then

((t′ · n) �� n0)
? = (t′ �� n0)

?

= (t′? � V (r′)) � n0 by the I.H. on t′

= ((t′ · n)? � V (r′)) � n0

Consequently, by Lemma 1.7, if tω 6∈ V@ ∪ VΣ then t �� r0 = (t? � r0) + Σ + @.796

1.3.9. O-view and P-view projection with respect to root797

Lemma 1.18 (O-view projection with respect to the root). Let t be a non-empty traversal
of M and r denote the only occurrence of τ(M)’s root in t. If tω appears in t � r then:

xt � ry = xty � r = xty .

Proof. It follows immediately from the fact that, by Lemma 1.6, all the occurrences in xty798

belong to the same thread and therefore are all hereditarily justified by r.799

Lemma 1.19 (P-view projection with respect to the root). Let t be a non-empty traversal
of M and r denote the only occurrence of τ(M)’s root in t. If tω appears in t � r then:

ptq � r v pt � rq .

Proof. We just sketch the proof. We proceed exactly in the same way as for the proof800

of Proposition 1.2. Again we establish an analogy between traversals and plays of game801

semantics:802

Traversal setting Game-semantic setting

Traversal t Play s
Nodes in n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ O-moves  

Nodes in n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ ∪ {�} P-moves #

P-view ptq P-view psq
O-view xty O-view xsy

Occurrence n her. just. by r in t Occurrence n ∈ B
Occurrence n not her. just. by r in t Occurrence n ∈ A

No notion of initiality (all nodes
are considered to be non-initial).

Distinction between initial and
non-initial move.

803
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Clearly the conditions (w1) to (w8) hold. Hence we can reuse Proposition 4.3 form [6]804

which gives the desired result.805

The previous result gives us only an inequality. In the particular case where interpreted806

constants are well-behaved, however, and if we consider the subsequence of a traversal807

consisting of unanswered nodes only, then we obtain an equality:808

Lemma 1.20. Suppose that M is in β-normal form and all the Σ-constants are well-809

behaved. Let t be a non-empty traversal of M and r denote the only occurrence in t of810

τ(M)’s root.811

(a) If t’s last occurrence is not a leaf then ptq � r = p?(t) � rq = p?(t � r)q =?(pt � rq);812

(b) If t’s last occurrence is not a leaf and is hereditarily justified by r then ptq � r = pt � rq.813

Proof. (a) It is easy to show that ?(t) � r = ?(t � r). This implies the second equality.814

The third equality can be shown by an easy induction and by observing that in a traversal815

core, variable occurrences are always immediately preceded by a lambda node (and not by816

a leaf). We show the first equality by induction. The base case t = ε is trivial. Consider817

a traversal t and suppose that the property is satisfied for all traversals shorter than t.818

Observe that since t contains at most a single occurrence r of the root ~, an occurrence n819

in t is hereditarily justified by r if and only if the corresponding node in τ(M) is hereditarily820

enabled by ~. Thus t � r = t � N~`. We do a case analysis on t’s last node:821

• tω ∈ N@. This case does not happen since M is β-normal.822

• t = t′ · n with n ∈ Nvar ∪ NΣ then t′ω is not a leaf (otherwise n would also be a leaf823

by rule (Value)) thus we can use the I.H. on t′ which, by an easy calculation, gives824

the desired equality.825

Suppose that tω is a lambda node. There are three subcases:826

• tω ∈ N@`
λ . Since the term is in β-normal form, there is no @-node in τ(M) so the827

rules (App) and (Var) are unused, hence this case does not happen.828

• tω ∈ NNΣ`
λ . We have t = t′ ·m · u · n with n ∈ NNΣ`

λ and m ∈ Nvar ∪ NΣ. The
occurrence n is necessarily visited with a (Σ)-rule. Since, by assumption, these rules
are well-behaved we have ?(u) = ε. Hence:

ptq � r = pt′ ·m · u · nq � r (def. of t)

= (pt′q ·m · n) � r (P-view computation)

= pt′q � r (m,n 6∈ N~`)

= p?(t′) � rq (induction hypothesis)

= p?(t′ ·m · n) � rq (m,n 6∈ N~`)

= p?(t′ ·m · u · n) � rq (?(u) = ε)

= p?(t) � rq (since u = ε).
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• tω ∈ N~`
λ . If t = r then the result holds trivially. Otherwise t = t′ ·m · u · n for some829

n ∈ N~`
λ . An easy calculation using the induction hypothesis on t′ · m shows the830

desired equality.831

(b) If t’s last occurrence is hereditarily justified by r then the last occurrence of t � r832

is precisely the last occurrence of t and is therefore not a leaf. In a traversal core, variable833

nodes are immediately preceded by lambda nodes thus since the last node in t � r is not834

a leaf, an easy induction shows that all the nodes in pt � rq are not leaves. Consequently835

?(pt � rq) = pt � rq.836

The hypothesis that the term is beta-normal is crucial in this Lemma. Take for instance
the term λxo f (o,o).(λyo.f y)x. A possible traversal is

t = λxf ·@ · λy · f · λ · y · λ · x .

But ptq � r = λxf · x is only a strict subsequence of pt � rq = λxf · f · λ · x.837

2. Game semantics correspondence838

We work in the general setting of an applied simply-typed lambda calculus with a given839

set of higher-order constants Σ. The operational semantics of these constants is given by840

certain reduction rules. We assume that a fully abstract model of the calculus is provided841

by means of a category of well-bracketed games. For instance, if Σ consists of the PCF842

constants then we work in the category of games and innocent well-bracketed strategies843

[6, 8]. A strategy is commonly defined in the literature as a set of plays closed by even-844

length prefixing. For our purpose, however, it is more convenient to represent strategies845

using prefix-closed set of plays. This will spare us some considerations on the parity of846

traversal length when showing the correspondence between traversals and game semantics.847

For the rest of the section we fix a simply-typed term Γ `M : T . We write [[Γ `M : T ]] for848

its strategy denotation (in the standard cartesian closed category of games and innocent849

strategies [8, 6]). We use the notation Pref(S) to denote the prefix-closure of the set S.850

2.1. Revealed game semantics851

In standard game semantics, terms are denoted by strategies that are computed induc-852

tively on the structure of the term: calculating the denotation of a term boils down to853

performing the composition of strategies denoting some of its subterms. Strategy compo-854

sition is the CSP-like “composition + hiding” operation where all the internal moves are855

hidden.856

It is possible to use an alternative notion of composition where the internal moves857

are not hidden. Game model based on such notion of composition have appeared in the858

literature under the name revealed semantics [9] and interaction semantics [10]. In such859

game models, the denotation is computed inductively on the syntax of the term as in the860

standard game semantics, but certain internal moves may be uncovered after composition.861
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There is not just one revealed semantics as one may desire to hide/uncover different internal862

moves. Such semantics will help to establish a correspondence between the game semantics863

of a term and the traversals of its computation tree.864

This section presents a general setting in which revealed semantics can be defined. At865

the end of the section we will provide an example of such an revealed semantics that is866

calculated inductively on the syntax of the η-long normal form of the term.867

2.1.1. Revealed strategies868

Definition 2.1. We consider ordered trees whose leaves are labelled with PCF simple869

types and inner nodes are labelled with symbols in {; , 〈 , 〉,Λ} where ‘;’ and ‘〈 , 〉’ are870

of arity 2 and ‘Λ’ is of arity one. We write 〈T1, T2〉 for the tree obtained by attaching T1871

and T2 to a 〈 , 〉-node, and similarly we use the notations T1;T2 and Λ(T1).872

The set of interaction type trees, or just interaction types, is defined inductively873

as follows:874

• Leaf : If T is a leaf annotated by a type A then T is an interaction type, and we875

define type(T ) to be A;876

• Currying : If T is an interaction type with type(T ) = A× B → C then Λ(T ) is also877

an interaction type and type(Λ(T )) = A→ (B → C);878

• Pairing : If T1 and T2 are interaction types with type(T1) = C → A and type(T2) =879

C → B then 〈T1, T2〉 is also an interaction type and type(〈T1, T2〉) = C → A × B880

(Pairing generalizes straightforwardly to a p-tuple operator 〈Σ1, . . . ,Σp〉 for p ≥ 2,881

in which case the tree has p child subtrees.);882

• Composition: If T1 and T2 are interaction types with type(T1) = A → B and883

type(T2) = B → C then T1;T2 is also an interaction type and type(T1;T2) = A→ C.884

We call type(T ) the underlying type (or just type) of the interaction type T . We some-885

times write TA to indicate that type(T ) = A.886

Let T be an interaction type tree. Each node of type A in T can be mapped to the887

(standard) game [[A]]. By taking the image of T across this mapping we obtain a tree whose888

leaves and nodes are labelled by games. This tree, written 〈〈T 〉〉, is called an interaction889

game. A revealed strategy Σ on the interaction game 〈〈T 〉〉 is a compositions of several890

standard strategies in which certain internal moves are not hidden. Formally:891

Definition 2.2. A revealed strategy Σ on an interaction game 〈〈T 〉〉, written Σ : 〈〈T 〉〉,892

is an annotated interaction type tree T where893

• each leaf [[A]] of T is annotated with a (standard) strategy σ on the game [[A]];894

• each ;-node is annotated with two sets of indices S, P ⊆ N called respectively the895

superficial and profound uncovering indices.896
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The intuition behind this definition is that if a ;-node has children Σ1 : 〈〈A→ B〉〉 and897

Σ2 : 〈〈B → C〉〉 then the two sets of indices S, P indicate which components of B should be898

uncovered when performing composition. The set S indicates which superficial internal899

moves (i.e., those that are created by the top-level composition between Σ1 and Σ2) to900

uncover; whereas the set P indicates the profound internal moves (i.e., those that are901

already present in the revealed strategies Σ1 and Σ2) to uncover. This notion of uncovering902

is made concrete in the next paragraph where we define revealed strategies by means of903

uncovered positions.904

Example 2.1. The diagrams below represent an interaction type tree T (left), the corre-905

sponding interaction game 〈〈T 〉〉 (middle) and a revealed strategy Σ (right):906

;

;

A→ B B → C

C → D

;

;

[[A→ B]] [[B → C]]

[[C → D]]

;{0},{0}

;∅,{0}

(A→ B)σ1 (B → C)σ2

(C → D)σ3

907

For convenience, a revealed strategy will be written as an expression in infix form: for908

instance the strategy of the example above is written Σ = (σ1;
∅,{0} σ2);

{0},{0} σ3.909

A revealed strategy induces a strategy in the usual sense: the standard strategy σ : A910

induced by a reveled strategy Σ : TA is obtained by replacing each occurrence of the911

operator ‘;S,P ’ for some S, P by ‘;∅,∅’ (also abbreviated ‘;’) in the expression of Σ. For912

instance the strategy Σ from the example above induces the strategy (σ1; σ2); σ3 : A→ D.913

2.1.2. Uncovered play914

The analogue of a play in the revealed semantics is called an uncovered play or uncovered915

position; it is a play whose moves are interleaved with internal moves. Each move in such916

a play may belong to multiple games from different nodes of the interaction game; they917

are thus implicitly tagged so that one can retrieve the components of the node-games to918

which the move belongs.919

Definition 2.3. The set of possible movesMT of an interaction game 〈〈T 〉〉 is defined as
MT/∼T , the quotient of the setMT by the equivalence relation ∼T⊆MT×MT defined as
follows: For a single leaf tree T labelled by a type A we defineMT = MA and ∼T= idMA

;
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for other cases:

MΛ(TA×B→C) =MT +MA→B→C

∼Λ(TA×B→C ) = (∼T ∪ ((A× B → C)↔ (A→ (B → C))))=

M
〈TC1→A1

1 ,TC2→B2
2 〉

=MT1 +MT2 +MC→(A×B)

∼
〈TC1→A1

1 ,TC2→B2
2 〉

=
(
∼T1 ∪ ∼T2 ∪(C1 ↔ C) ∪ (C2 ↔ C) ∪ (A1 ↔ A) ∪ (B2 ↔ B)

)=

MTA→B
1 ;TB→C

2
=MT1 +MT2 +MA→C

∼
TA1→B1
1 ;TB2→C2

2
=

(
∼T1 ∪ ∼T2 ∪(A1 ↔ A) ∪ (B1 ↔ B2) ∪ (C ↔ C2)

)=

where A ↔ B denotes the canonical bijection between MA and MB for two isomorphic920

games A and B; and R= denotes the smallest equivalence relation containing R.921

It is easy to check that for every sub-type tree T ′ of T , the equivalence classes of MT ′922

are subsets of equivalence classes of MT . Thus MT ′ can be viewed as a subset of MT .923

We call internal move of the game 〈〈T 〉〉, any ∼-class from MT that does not contain924

any move from Mtype(T ). We denote the set of all internal moves by M int
T . The complement925

of M int
T in MT , called the set of external moves, is denoted by M ext

T . For every subgame926

A occurring in some node of the interaction game T , we write M int
T,A (resp. M ext

T,A) for the927

subset of moves of M int
T (resp. M ext

T ) consisting of ∼-classes containing some move in MA.928

A justified interaction sequence of moves on the interaction game 〈〈T 〉〉 is a sequence929

of moves from MT together with pointers where each move in the sequence except the first930

one has a link attached to it pointing to some preceding move in the sequence. We write931

JT to denote the set of justified interaction sequences over 〈〈T 〉〉.932

Definition 2.4 (Projection). Let s ∈ JT for some interaction game T . We define the933

following projection operations:934

(a) Let M ′ be a subset of MT . The projection s � M ′ is defined as the subsequence of s935

consisting of ∼-equivalence classes from M ′;936

(b) Let A be a sub-game of [[type(T )]]. We define the projection operator s � A to be the937

subsequence of s consisting of the ∼-classes that contain some move in MA. Formally938

s � A
def
= s � {[m] |m ∈MA} where [m] denotes the ∼-equivalence class of m.939

(c) Let m be a [[type(T )]]-initial move occurring in s. We define s � m as the subsequence940

of s consisting of moves that are hereditarily justified by that occurrence of m in941

s � [[type(T )]].942

(d) Let T ′ be an immediate subtree of T . The projection s � T ′ is defined as follows:943
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(i) the sequence s � T ′ viewed as a sequence of moves without pointers is defined as944

s � MT ′ (i.e., the subsequence of s consisting of the ∼-equivalence classes that945

contain some equivalence class of MT ′ ; see (a));946

(ii) the justification pointers of s � T ′ are those of s except that if an element m947

loses its pointer (i.e., if its justifier does not appear in s � T ′) then its justifier948

is redefined as the only occurrence of an initial [[type(T ′)]]-move in ps � MT ′ �949

[[type(T ′)]]q (cf. (a) and (b)).950

(e) Let T ′ be a non-immediate subtree of T . We define the projection s � T ′ as (. . . (s �951

T 0) � . . . � T k−1) � T k where T 0, . . . , T k is the uniquely defined sequence of subtrees952

of T satisfying T = T 0, T ′ = T k and such that for every 1 ≤ l ≤ k, T l is an immediate953

subtree of T l−1.954

(f) Let T ′ be some subtree of T and A be a sub-game of [[type(T ′)]]. Then we write s � A955

for s � T ′ � A.956

By extension, we also define these operations on sets of justified interaction sequences.957

We now characterize revealed strategies by means of sets of justified sequences of moves958

called uncovered positions or uncovered plays. This set is calculated by a bottom-up com-959

putation on the strategy tree. At each ;-node, we apply the composition operation of960

game semantics. In accordance with standard game semantics, justification pointers are961

adjusted when composing two interaction strategies Σl : TA→B
l and Σr : TB→C

r : if an initial962

A-move a is justified by an initial B-move itself justified by an initial C-move c then a’s963

justifier is set to c (see definition of the projection � A,C [11]). This guarantees that964

for every interaction position u of Σl; Σr, the subsequence consisting of moves in A and C965

only—filtering out B-moves as well as the internal moves coming from compositions taking966

place at deeper level in the revealed semantics—is a valid position of the standard strategy967

underlying Σl; Σr. In contrast with the standard game semantics, however, not all internal968

moves are hidden during composition.969

Definition 2.5. A revealed strategy Σ (defined by means of an annotated type tree) is970

characterized by its set of uncovered positions defined inductively as follows:971

- Leaf labelled with type A and annotated by the strategy σ: The set of positions of the972

revealed strategy is precisely the set of positions of the standard strategy σ.973

- Currying : Let Σ : 〈〈T 〉〉.

Λ(Σ) = {u ∈ JΛ(T ) | ρ(u) ∈ Σ} ,

where ρ denotes the canonical bijection from MΛ(T ) to MT .974

- Pairing : Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉.

〈Σ1,Σ2〉 = {u ∈ J〈T1,T2〉 | (u � T1 ∈ Σ1 ∧ u � T2 = ε)
∨ (u � T1 = ε ∧ u � T2 ∈ Σ2)} .
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- Uncovered composition: Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 where type(T1) = A→ B0×. . .×Bl

and type(T2) = B0 × . . .× Bl → C.

Σ1‖Σ2 = {u ∈ JT1;T2 | u � T2 ∈ Σ2

∧ for all occurrence b in u of an initial [[type(T1)]]-
move, u � T1 � b ∈ Σ1

∧ for every initial A-move a justified in u � T1 by
b ∈ Bj , itself justified by c ∈ C in u � T2, we
have that m is justified by c in u. } .

- Partially covered composition: Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 where type(T1) = A →
B0 × . . .× Bl and type(T2) = B0 × . . .× Bl → C.

Σ1 ;S,P Σ2 = {hide(u, {0..l} \ S, {0..l} \ P ) | u ∈ Σ1‖Σ2}

where hide(u, S, P ) = u � (MT \H(S, P ))

H(S, P ) =
⋃

j∈S

M ext
T1,Bj

∪M ext
T2,Bj

︸ ︷︷ ︸

superficial Bj-moves

∪
⋃

j∈P

M int
T1,Bj

∪M int
T2,Bj

︸ ︷︷ ︸

profound Bj-moves

.

Observe that in particular Σ1‖Σ2 = Σ1;
{0..l},{0..l} Σ2.975

In words, the uncovered composition of Σ1‖ Σ2 is the set of uncovered plays obtained976

by performing the usual composition of the standard strategies underlying Σ1 and Σ2 while977

preserving the internal moves already in Σ1 and Σ2 as well as the internal movea produced978

by the composition.979

On the other hand, given a product game B = B0 × . . . × Bl, the partially covered980

composition Σ1;
S,P Σ2 keeps only the superficial internal moves from the component Bk for981

k ∈ S as well as the profound internal moves from the component Bk for k ∈ P .982

As expected, this notion of set of uncovered positions is coherent with the usual notion983

of positions of a standard strategy:984

Lemma 2.1. Let Σ : T be a revealed strategy inducing the standard strategy σ : [[type(T )]].985

Then for all u ∈ Σ, u � [[type(T )]] ∈ σ.986

Proof. The proof is by induction on the structure of Σ. It follows from the fact that the987

operations on revealed strategies from Def. 2.5 are defined identically to their counterparts988

in the standard game semantics.989

2.1.3. Fully-revealed and syntactically-revealed semantics990

We call revealed semantics any game model of a language in which a term is denoted991

by some revealed strategy as defined in the previous section. As we have already observed,992

depending on the internal moves that we wish to hide, we obtain different possible revealed993

strategies for a given term. Thus there is not a unique way to define a revealed semantics.994

In this section we give two examples of such semantics.995

Let πi denote the ith projection strategy πi : [[X1 × . . .×Xl]]→ [[Xi]].996

41



Definition 2.6 (The fully-revealed semantics). The fully-revealed game denotation997

of M written 〈〈Γ `M : A〉〉 is defined by structural induction on the η-long normal form998

of M :999

〈〈Γ ` α : o〉〉 = [[Γ ` α : o]] where α ∈ Γ ∪ Σ,

〈〈Γ ` λξ.M : A〉〉 = Λ|ξ|(〈〈Γ, ξ `M : o〉〉)

〈〈Γ ` xiN1 . . . Np : o〉〉 = 〈πi, 〈〈Γ ` N1 : A1〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉‖ev
p, Xi = A0

〈〈Γ ` fN1 . . . Np : o〉〉 = 〈〈〈Γ ` N1 : A1〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 ‖ [[f ]], f : A0 ∈ Σ

〈〈Γ ` N0 . . . Np : o〉〉 = 〈〈〈Γ ` N0 : A0〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 ‖ ev
p

where Γ = x1 : X1 . . . xl : Xl, A0 = (A1, . . . , Ap, o) and evp denotes the evaluation strategy1000

with p parameters where p ≥ 1.1001

Fig. 1 shows tree representations of the interaction games involved in the revealed1002

strategy 〈〈Γ `M : A〉〉 for the two application cases. These trees give us information about1003

the constituent strategies involved in 〈〈M〉〉. For instance the revealed strategy 〈〈N0〉〉 is1004

defined on the interaction game 〈〈T 00〉〉 whose root game is A → B0, and the strategy ev1005

is defined on the interaction game 〈〈T 1〉〉 whose underlying tree is constituted of a single1006

game-node B0 × . . .× Bp → o.1007

Example 2.2. Take the term λx.(λf.fx)(λy.y). Its fully-revealed denotation is

Λ(〈[[x : X ` λf.fx : (o→ o)→ o]], [[x : X ` λy.y : o→ o]]〉‖ev2) .

Note that the set of fully-revealed strategies does not give rise to a category because1008

strategy composition is not associative and there is no identity interaction strategy.1009

Definition 2.7 (Syntactically-revealed semantics). The syntactically-revealed game1010

denotation of M written 〈〈Γ `M : A〉〉s is defined by structural induction on the η-long1011

normal form of M . The equations are the same as in Def. 2.6 except for the third case:1012

〈〈Γ ` xiN1 . . . Np : o〉〉
s

= 〈πi, 〈〈Γ ` N1 : A1〉〉s, . . . , 〈〈Γ ` Np : Ap〉〉s〉;
∅,{1..p} evp, Xi = A0 .

The syntactically-revealed denotation differs from the fully-revealed one in that only1013

certain internal moves are preserved during composition: when computing the denotation1014

of an application (joint by an @-node) in the computation tree, all the internal moves are1015

preserved. However when computing the denotation of 〈〈yiN1 . . . Np〉〉s for some variable1016

yi, we only preserve the internal moves of N1, . . . , Np while omitting the internal moves1017

produced by the copy-cat projection strategy denoting yi.1018

2.1.4. Relating the two revealed denotations1019

As one would expect, the two revealed denotations that we have just introduced are in1020

fact equivalent. We now show how 〈〈Γ `M : A〉〉 can be obtained from 〈〈Γ `M : A〉〉s and1021

conversely.1022
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〈〈N0N1 . . . Np : o〉〉 : T [A→ o]

〈〈〈N0〉〉, . . . , 〈〈Np〉〉〉 : T 0[A→ B0 × . . .× Bp]

〈〈N0〉〉 : T 00[A→ B0] . . . 〈〈Np〉〉 : T 0p[A→ Bp]

ev : T 1[B0 × . . .× Bp → o]

Tree-representation of the revealed strategy 〈〈Γ ` N0N1 . . . Np : o〉〉.

〈〈xiN1 . . . Np : o〉〉 : T [A→ o]

〈〈〈N0〉〉, . . . , 〈〈Np〉〉〉 : T 0[A→ B0 × . . .× Bp]

πi : T 00[A→ B0] 〈〈N1〉〉 : T 01[A→ B1] . . . 〈〈Np〉〉 : T 0p[A→ Bp]

ev : T 1[B0 × . . .× Bp → o]

Tree-representation of the revealed strategy 〈〈x : X ` xiN1 . . . Np : o〉〉.

A node label ‘Π : T [G]’ indicates that Π is a revealed strategy on the interaction game T whose
top-level game (at the root of the tree underlying T ) is G. Each game is annotated with a string
s ∈ {0..p}∗ in the exponent to indicate the path from the root to the corresponding node in the
tree. (The digits in s tell the direction to take at each branch of the tree.)
The games A and B are given by:

A = X1 × . . .×Xn

B = ((B′
1 × . . .×B′

p)→ o′)
︸ ︷︷ ︸

B0

×B1 × . . .×Bp .

Figure 1: Tree-representation of the revealed strategy in the application case.
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Fully-uncovered composition versus partially-uncovered composition. In this paragraph we
relate the fully-uncovered composition ‘‖’ with the partially-uncovered composition ‘;∅,{1..p}’
used in the definition of the syntactically-revealed semantics. Take a termM ≡ xiN1 . . . Np.
Its revealed denotation is given by 〈〈Γ `M : o〉〉s = Σs;

∅,{1..p} ev where Σs = 〈πi, 〈〈Γ ` N1 : B1〉〉s, . . . , 〈〈Γ ` Np

We use the notations introduced in Fig. 1: the composition takes place on the game

X1×. . .

Xi
︷ ︸︸ ︷

((B′′
1 × . . .×B

′′
p )→ o′′) . . .×Xn

Σ
−→

B0
︷ ︸︸ ︷

((B′
1 × . . .× B

′
p)→ o′)×B1 × . . .× Bp

ev
−→ o

where the dashed-line frame contains the internal components of the game.1023

In Σs‖ev, all the internal moves from Bk for k ∈ {0..p} are preserved, whereas in 〈〈M〉〉s,
the internal B0-moves as well as the superficial internal Bk-moves for k ∈ {1..p} are hidden.
By definition of the composition operator ‘;∅,{1..p}’, the set 〈〈Γ `M : o〉〉s is obtained from
Σs‖ev by eliminating the internal B-moves appropriately:

〈〈Γ `M : o〉〉s = Σs;
∅,{1..p} ev = {hide(u, ∅, {1..p}) | u ∈ Σs‖ev} .

We now show that conversely, there exists a transformation mapping the set 〈〈Γ `M : o〉〉s1024

to Σs‖ev. More precisely we show that for every u ∈ 〈〈Γ `M : o〉〉s, there is a unique play v1025

of Σs‖ev ending with an external move such that eliminating the superficial internal moves1026

from it gives us back u.1027

Let us look at the structure of an interaction play of Σ‖ev. The state-diagram in Fig. 21028

describes precisely the flow of an interaction play. A node of the diagram indicates the1029

last move that was played. Its label is of the form ‘A, α’ where A is the game in which the1030

move was played, and α ∈ {  , #, H#, G#} specifies the player that made the move. We use1031

the symbols G#, H#,  , # for OP-move, PO-move, O-move and P-move respectively. We use1032

the notation ‘Xi.B
′′
k ’ to denote the sub-component B′′

k of the game Xi.1033

An edge from node S1 to node S2 in the diagram indicates that the move S2 can be1034

played if S1 was the last moved played. It is labelled by the name of the strategy that is1035

responsible of making the move or by ‘Env.’ to denote a move played by the environment1036

(i.e., the opponent in the overall game [[Γ→ o]]). For instance the edge Bk, H#
ev
−→ B0, G#1037

tells us that if Bk, H# is the last move played then the evaluation strategy can respond with1038

the move Bk, H#. The game starts at node C,  which corresponds to the initial move of1039

the overall game. The dashed-edges correspond to moves played by the copy-cat strategies1040

πi and ev.1041

We observe that every (superficial) internal move played in some component Bk for1042

k ∈ {0..p} is either a copy of a previous external move, or it is subsequently copied to a1043

external component by the copy-cat strategy ev or πi: G#-moves from B0 are copies by ev1044

of O-moves from C and H#-moves from Bk, k ∈ {1..p}; H#-moves from B0 are copies by πi1045

of O-moves from Xi; G#-moves from Bk, k ∈ {1..p} are copies by ev of H#-moves from the1046

components B′
k of B0; and finally H#-moves from Bk, k ∈ {1..p} are copied into B0.1047

Moreover, each move on the diagram of Fig. 2 has either a single outgoing copy-cat
edge—in which case the following move is uniquely determined—or it has multiple out-
going edges all labelled by Σ—in which case the strategy Σ determines which moves will
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B0, G# C,  
Env.
←−−−

Xi, #

Xi.B
′′
k ,  Xi.o

′′,  

B0.B
′
k, H# B0.o

′, H# C, #

Bk, G#

Xjj 6=i, #

Xjj 6=i,  

Bk, H#

ev

πi

πi πi
ev

evev

Σ

Σ

Env.Σ

Σ

Env.

Env.
Env.

Σ

Σ
Env.

where k ∈ {1..p}, i, j ∈ {1..n} and p ≥ 1.

Figure 2: Flow-diagram for interaction plays of 〈〈Γ ` xiN1 . . . Np〉〉.

be played next. Hence for every two consecutive moves in a play of 〈〈Γ `M : o〉〉s we can
uniquely recover all the internal moves occurring between the two moves in the corre-
sponding play of Σs‖ev by following the arrows of the flow diagram. This transformation
is called the syntactical uncovering function with respect to Σs and ev and is denoted
gΣ,ev : Σs;

∅,{1..p} ev → Σs‖ev. By definition it satisfies the following property:

hide(gΣ,ev(u), ∅, {1..p}) = u

for all u ∈ Σs;
∅,{1..p} ev whose last occurrence is an external move (i.e., in C or Xi for1048

i ∈ {1..n}).1049

Recovering the fully-revealed semantics from the syntactically-revealed semantics. Given a1050

term-in-context Γ ` M : A, its syntactically-revealed denotation 〈〈Γ `M : A〉〉s can be1051

obtained from 〈〈Γ `M : A〉〉 by recursively hiding the appropriate internal moves. Con-1052

versely, the fully-revealed denotation 〈〈Γ `M : A〉〉 can be obtained from 〈〈Γ `M : A〉〉s by1053

recursively applying the syntactical-uncovering transformation described in the previous1054

paragraph for every subterm of the form yiN1 . . . Np.1055

2.1.5. Revealed semantics versus standard game semantics1056

In the standard semantics, given two strategies σ : A→ B, τ : B → C and a sequence1057

s ∈ σ; τ , it is possible to (uniquely) recover from the sequence s the internal moves that1058
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were hidden during composition [6, part II]. The revealed denotation of a term can be1059

recovered from its standard game denotation by recursively uncovering the internal moves1060

for every application occurring in the term.1061

Conversely, the standard denotation can be obtained from the revealed denotation by1062

filtering out all the internal moves:1063

[[Γ `M : T ]] = 〈〈Γ `M : T 〉〉 � [[Γ→ T ]] . (7)

This equality remains valid if we replace the fully revealed denotation by the syntactically-1064

revealed denotation.1065

Observe that the two sets of plays 〈〈Γ `M : T 〉〉 and [[Γ `M : T ]] are not in bijection.1066

Indeed, by definition the revealed denotation is prefix-closed therefore it also contains plays1067

ending with an internal move. Thus the revealed denotation contains more plays than the1068

standard denotation. What we can say, however, is that the set of plays [[Γ `M : T ]] is1069

in bijection with the subset of 〈〈Γ `M : T 〉〉 consisting of plays ending with an external1070

move. Furthermore the set of complete plays of [[Γ `M : T ]] is in bijection with the set of1071

complete interaction plays of 〈〈Γ `M : T 〉〉.1072

2.1.6. Projection1073

The projection operation for justified sequences of moves of an interaction strategies1074

(Def. 2.4) proceeds by eliminating some of the moves from the sequence. In general when1075

projecting a sequence s ∈ Σ on a subtree T ′, for some subtree Σ′ : T ′ of Σ : T , the1076

resulting sequence is not necessarily an interaction position of Σ′ because some internal1077

moves may be missing from s. The following lemma shows that for strategies that are1078

fully-revealed denotations the projection operation generates valid positions of its sub-1079

interaction strategies.1080

Lemma 2.2 (Projection for fully-revealed denotations). Let Σ : T be a fully-revealed1081

denotation (i.e., Σ = 〈〈M〉〉 for some term M). Then for every sub-tree Σ′ : T ′ of Σ : T1082

and u ∈ Σ:1083

• if T ′ is the first subtree of a ‘;’-node in T then for every initial [[type(T ′)]]-move b1084

occurring in u we have u � T ′ � b ∈ Σ′;1085

• otherwise (T ′ is the subtree of a ‘Λ’-node, ‘〈 , 〉’-node or the lth subtree of a ‘;’-node1086

for l > 1) then u � T ′ ∈ Σ′.1087

Proof. The proof is by induction on the distance between T ′ and T ’s root. The sequence1088

u � T ′ equals u � T0 � . . . � Tk for some k ≥ 0 where the Tis are the unique subtrees of T1089

such that T0 = T , Tk = T ′, and Ti is an immediate subtree of Ti−1 for 1 ≤ i ≤ k. Let Σi : Ti1090

denote the strategy corresponding to each subtree Ti of T . We proceed by induction on1091

k ≥ 0. The base case is trivial. Step case: Suppose that v = u � Tk−1 ∈ Σk−1. We do a case1092

analysis on the type of the root node of Σk−1. The cases ‘Λ’ and ‘〈 , 〉’ are trivial. The only1093

other possible case is ‘‖’ (since Σ is a fully-revealed denotation). The result then follows1094

by definition of ‖ with a subtlety in the case l = 1: we have Σk−1 = Σ′‖Σr, Σ′ : T ′A→B for1095
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some strategy Σr : TB→C
r . When calculating the positions of the composition Σ′‖Σr, links1096

going from initial A-moves to initial B-moves in the positions of Σ′ are changed into links1097

pointing to initial C-moves in Σ′‖Σr. Thus in order to obtain a valid position of Σ′ from v1098

we need to recover the pointers accordingly. This is precisely what the filtering operation1099

� T ′ does (see Def. 2.4): if a move in v loses its pointer in v � MT ′ then its justifier in1100

v � T ′ is set to the only initial move occurring in the P-view pv � MT ′ � [[type(T ′)]]q, which1101

is necessarily b. Hence the justification pointers are properly restored and v � T ′ � b is1102

indeed an uncovered position of Σ′.1103

Together with Lemma 2.1 this further implies:1104

Lemma 2.3. Let Σ = 〈〈M〉〉 : T . For every u ∈ Σ and sub-tree Σ′ : T ′ of Σ : T inducing a1105

standard strategy σ′ : [[type(T ′)]]:1106

• if T ′ is the first subtree of a ‘;’-node in T then for every initial D-move b occurring1107

in u we have u � [[type(T ′)]] � b ∈ σ′;1108

• otherwise (T ′ is the subtree of a ‘Λ’-node, ‘〈 , 〉’-node or the lth subtree of a ‘;’-node1109

for l > 1) then u � [[type(T ′)]] ∈ σ′.1110

Proof. Follows immediately from Lemma 2.2 and 2.1.1111

Lemma 2.4 (Well-bracketing). Let Σ : T be the fully-revealed denotation of some term M .1112

Then for every sub-revealed strategies Σ′ : T ′ of Σ : T , the standard strategy σ′ : [[type(T ′)]]1113

induced by Σ′ is well-bracketed.1114

Proof. The leaves of a fully-revealed denotation are annotated by well-bracketed strategies1115

therefore since well-bracketing is preserved by pairing, currying and composition, all the1116

standard strategies induced by the sub-revealed strategies of Σ are also well-bracketed.1117

Lemma 2.5 (Complete interaction play). Let Σ : T and Σs : T denote respectively the1118

fully-revealed strategy and syntactically-revealed denotation of some term (i.e., Σ = 〈〈M〉〉1119

and Σs = 〈〈M〉〉
s
for some term M). Then:1120

(i) For every u ∈ Σ, if u � [[type(T )]] is complete (i.e., maximal and all question moves1121

are answered) then so is u.1122

(ii) For every u ∈ Σs, if u � [[type(T )]] is complete then so is u.1123

Proof. (i) We show the contrapositive. If u is not complete then it contains an answered1124

move b. If b is not internal then it appears in u � [[type(T )]] and therefore u � [[type(T )]]1125

is not complete. Otherwise, let Σ′ : T ′ be the subtree of Σ where the internal move b1126

is uncovered: Σ′ is of the form Σ1;
S,P Σ2 for some S, P ⊆ N with Σ1 : 〈〈TA→B

1 〉〉 and1127

Σ2 : 〈〈TB→C
2 〉〉, and b belongs to some uncovered component of B (i.e., whose index is in1128

S).1129

Since b is unanswered in u, it is not answered in u � A,B and u � B,C either; thus1130

the sequences u � A,B and u � B,C are not complete. This further implies that u � A,C1131
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is not complete (By contradiction: otherwise we would have u � A → C = q u′ a for1132

some initial question q and answer a; but since q and a both belong to C this implies1133

u � B → C = q . . . a). By Lemma 2.3, u � B → C belongs to the standard strategy1134

induced by Σ2, and by Lemma 2.4 this strategy is well-bracketed, thus u � B → C is1135

well-bracketed; so since its first question is answered it is necessarily complete.1136

We have shown that u � [[A→ C]] = u � [[type(T ′)]] is not complete. We then conclude by1137

observing that if u � [[type(T ′)]] is not complete for some sub-tree T ′ of T then u � [[type(T )]]1138

is not complete either. This can be shown by an easy induction on the distance between1139

the root of T ′ and T : The currying and pairing cases are trivial; for the composition case,1140

the argument is similar to the one used in the previous paragraph.1141

(ii) By applying the syntactical uncovering function on u we obtain a position v of Σ1142

satisfying u � [[type(T )]] = v � [[type(T )]]. Hence by (i), v is complete, and therefore so is u1143

(since u is the subsequence of v obtained by recursively hiding internal moves).1144

2.2. Relating computation trees and games1145

In this paragraph we relate nodes of the computation tree to moves of the game arena.1146

First we use an example to explain the insight before giving the formal definition.1147

2.2.1. Example1148

Consider the following termM ≡ λfz.(λgx.f(fx))(λy.y)z of type (o→ o)→ o→ o. Its1149

η-long normal form is λfz.(λgx.f(fx))(λy.y)(λ.z). The following figure represents side-1150

by-side the computation tree of M (left) and the arena of the game [[(o→ o)→ o→ o]]1151

(right):1152

λfz

@

λgx

f

λ

f

λ

x

λy

y

λ

z

q1

q3

q4

a4
1
. . .

a3
1
. . .

q2

a2
1 a2

2
. . .

a1 a2 . . .

1153

Now consider the following partial mapping ψ (represented by a dashed line in the1154

diagram below) from the set of nodes of the computation tree to the set of moves in the1155

arena: (For simplicity, we now omit answer moves when representing arenas.)1156
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λfz[1]

@[2]

λgx[3]

f [6]

λ[7]

f [8]

λ[9]

x[10]

λy[4]

y

λ[5]

z

q1

q3

q4

q2

ψ
1157

Consider the justified sequence of moves:

s = q1 q3 q4 q3 q4 q2 ∈ [[M ]] .

Its image by ψ(ri) gives a justified sequence of nodes of the computation tree:

r = λfz · f [6] · λ[7] · f [8] · λ[9] · z

where si = ψ(ri) for all i < |s|.1158

The sequence r is in fact the core of the following traversal:

t = λfz ·@[2] · λgx[3] · f [6] · λ[7] · f [8] · λ[9] · x[10] · λ[5] · z .

This example motivates the next section where we formally define the mapping ψ for1159

any given simply-typed term.1160

2.2.2. Formal definition1161

We now establish formally the relationship between games and computation trees. We1162

assume that a term Γ `M : T in η-long normal form is given.1163

Notations 2.1 We suppose that computation tree τ(M) is given by a pair (V,E) where1164

V is the set of vertices and E ⊆ V × V is the parent-child relation. We have V = N ∪ L1165

where N and L are the set of nodes and value-leaves respectively. Let D be the set of1166

values of the base type o. If n is a node in N then the value-leaves attached to the node1167

n are written vn where v ranges in D. Similarly, if q is a question in A then the answer1168

moves enabled by q are written vq where v ranges in D.1169

Definition 2.8 (Mapping from nodes to moves of the standard game semantics).1170
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• Let n be a node in Nλ ∪Nvar and q be a question move of some game A such that n1171

and q are of type (A1, . . . , Ap, o) for some p ≥ 0. Let {q1, . . . , qp} (resp. {vq | v ∈ D})1172

be the set of question-moves (resp. answer-moves) enabled by q in A (each qi being1173

of type Ai).1174

We define the function ψn,qA from V n`— nodes that are hereditarily enabled by n—to1175

moves of A as:1176

ψn,qA = {n 7→ q} ∪ {vn 7→ vq | v ∈ D}

∪

{ ⋃

m∈Nvar |n`im
ψm,q

i

A , if n ∈ Nλ ;
⋃

i=1..p ψ
n.i,qi

A , if n ∈ Nvar .

• Suppose Γ = x1 : X1, . . . , xk : Xk. Let q0 denote [[Γ→ T ]]’s initial move3 and suppose1177

that the set of moves enabled by q0 in [[Γ→ T ]] is {qx1, . . . , qxk
, q1, . . . , qp}∪{vq | v ∈1178

D} where each qi is of type Ai and qxj
of type Xj.1179

We define ψM : V ~` → [[Γ→ T ]] (or just ψ if there is no ambiguity) as:1180

ψM = {r 7→ q0} ∪ {vr 7→ vq0 | v ∈ D}

∪
⋃

n∈Nvar|~`in

ψn,q
i

[[Γ→T ]]

∪
⋃

n∈Nfv|n labelled xj ,j∈{1..k}

ψ
n,qxj

[[Γ→T ]] .

It can easily be checked that the domain of definition of ψn,qA is indeed the set of nodes1181

that are hereditarily enabled by n and similarly, the domain of ψM is the set of nodes that1182

are hereditarily enabled by the root (this includes free variable nodes and nodes that are1183

hereditarily enabled by free variable nodes). Also, if M is closed then we have ψM = ψ~,q0
[[→T ]].1184

1185

The construction of the function ψn,qA , defined above, goes as follows. Let p be the arity1186

of the type of n and q.1187

• If p = 0 then n is a dummy λ-node or a ground type variable: ψn,qA maps n to the1188

initial move q.1189

• If p ≥ 1 and n ∈ Nλ with n labelled λξ = λξ1 . . . ξp then the sub-computation tree1190

rooted at n and the arena A have the following forms (value-leaves and answer moves1191

are not represented for simplicity):1192

3Arenas involved in the game semantics of simply-typed lambda calculus are trees: they have a single
initial move.
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λξ
[n]

α

. . .

q

q1 q2 . . . qp

ψn,qA1193

For each abstracted variable ξi there exists a corresponding question move qi of the1194

same order in the arena. The function ψn,qA maps each free occurrence of ξi in the1195

computation tree to the move qi.1196

• If p ≥ 1 and n ∈ Nvar then n is labelled with a variable x : (A1, . . . , Ap, o) with1197

children nodes λη1, . . . , ληp. The computation tree τ(M) rooted at n and the arena1198

A have the following forms:1199

x[n]

λη1
. . . ληp

q

q1 q2 . . . qp

ψn,qA1200

and ψn,qA maps each node ληi to the question move qi.1201

Example 2.3. For each of the following examples of term-in-context Γ ` M : T , we1202

represent the computation tree τ(M), the arena of the game [[Γ→ T ]], and the function1203

ψM (in dashed lines):1204

• M = λxo.x1205

λx

x

qλx

qx

ψM1206

• M = λf (o,o,o).fxy1207

λf

f

λ

x

λ

y

qλf

qf

qf1 qf2

qx qy

ψM1208

• M = λf (o,o).(λg(o,o,o).g(fx)z)(λyowo.y)1209
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λf

@

λg

g

λ

f

λ

x

λ

z

λyw

y

qλf

qf

qf1

qz qx

ψM1210

Lemma 2.6.1211

(i) ψM maps λ-nodes to O-questions, variable nodes to P-questions, value-leaves of λ-1212

nodes to P-answers and value-leaves of variable nodes to O-answers;1213

(ii) ψM preserves hereditary enabling: a node n ∈ V ~` is hereditarily enabled by some1214

node n′ ∈ V ~` in τ(M) if and only if the move ψM (n) is hereditarily enabled by1215

ψM (n′) in [[Γ→ T ]];1216

(iii) ψM maps a node of a given order to a move of the same order;1217

(iv) Let s ∈ T rav(M)�~. The P-view (resp. O-view) of ψM (s) and s are computed identi-1218

cally (i.e., the set of positions of occurrences that need to be deleted in order to obtain1219

the P-view (resp. O-view) is the same for both sequences).1220

Proof. (i), (ii) and (iii) are direct consequences of the definition. (iv): Because of (i) and1221

since t and ψM (t) have the same pointers, the computations of the views of the sequence1222

of moves and the views of the sequence of nodes follow the same steps.1223

The convention chosen to define the order of the root node (see Def. 1.3) permits us to1224

have property (iii). This explains why the order of the root node was defined differently1225

from other lambda nodes.1226

By extension, we can define the function ψM on T rav(M)�~, the set of traversal cores,1227

as follows:1228

Definition 2.9 (Mapping traversal cores to sequences of moves). The function ψM maps1229

any traversal core u = u0u1 . . . ∈ T rav(M)�~ to the following justified sequence of moves1230

of the arena [[Γ→ T ]]: ψM(u) = ψM(u0) ψM(u1) ψM(u2) . . . where ψM(u) is equipped with1231

u’s pointers.1232

The pointer-free function underlying ψM is thus a monoid homomorphism.1233
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2.3. Mapping traversals to interaction plays1234

Let I be the interaction game of the revealed strategy 〈〈Γ `M : T 〉〉s and MI be the set1235

of equivalence classes of moves fromMI .1236

Let r′ be a lambda node in Nspawn (the children nodes of @/Σ-nodes). We write Γ(r′) `1237

κ(r′) : T (r′) to denote the subterm of dMe rooted at r′ (thus Γ(r′) ⊆ Γ). We consider the1238

function ψκ(r′) which maps nodes of V r′` to moves of [[Γ(r′)→ T (r′)]]. Since MI contains1239

the moves from the standard game [[Γ(r′)→ A(r′)]], we can consider ψκ(r′) as a function1240

from V r′` toMI .1241

Every node in n ∈ V \ (V@ ∪ VΣ) is either hereditarily enabled by the root or by some
λ-node in Nspawn. Therefore we can define the following relation ψ∗

M from V \ (V@ ∪ VΣ) to
MI :

ψ∗
M = ψM ∪

⋃

r′∈Nspawn

ψκ(r′) .

This relation is totally defined on V \ (V@ ∪ VΣ) since those nodes are either hereditarily1242

justified by the root, by an @-node or by a Σ-node. Moreover it is a relation and not a1243

function since for a given variable node x, for every spawn node r′ occurring in the path1244

from x to ~, x is hereditarily enabled by r′ with respect to the computation tree τ(κ(r′)).1245

Thus the domains of definition of the relations ψκ(r′) for such nodes r′ overlap. It can be1246

easily check, however, that for every node n ∈ V \ (V@ ∪ VΣ), the moves in ψ∗
M(n) are all1247

∼-equivalent, which leads us to the following definition:1248

Definition 2.10 (Mapping from nodes to moves of the syntactically-revealed semantics).1249

We define the function ϕM : V \ (V@ ∪VΣ)→MI as follows: For n ∈ V \ (V@ ∪VΣ), ϕM(n)1250

is defined as the ∼-equivalence class containing the set ψ∗
M (n). We omit the subscript in1251

ϕM if there is no ambiguity.1252

Definition 2.11 (Mapping sequences of nodes to sequences of moves). We define the
function ϕM from T rav(M)? to justified sequence of moves in MI as follows. If u =
u0u1 . . . ∈ T rav(M)? then:

ϕM(s) = ϕM(u0) ϕM(u1) ϕM(u2) . . .

where ϕM(u) is equipped with u’s pointers.1253

Example 2.4. Take M = λxo.(λg(o,o).gxz)(λyo.y). The diagram below represents the1254

computation tree (middle) and the relation ψ∗
M = ψλx ∪ ψλg.gx ∪ ψλy.y (dashed-lines).1255

λx

@

λg

g

λ

x

λ

z

λy

y

qλx

qx qzqλy

qy

qλg

q′x q′z qg

qg1

ψM

ψλy.y
ψλg.gx

1256
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where q′x ∼ qx, q
′
z ∼ qz, qg ∼ qλy, qg1 ∼ qy and qλg ∼ qλx.1257

Lemma 2.7 (Traversal projection lemma). Let ∆ ` Q : A be a subterm of dMe and
~Q denote the root lambda node of the subtree of τ(M) corresponding to the term Q. Let
t ∈ T rav(M), r0 be an occurrence of ~Q in t and m0 be the occurrence of the initial
A-move ϕM(r0) in ϕM(t?). Then:

ϕQ(t? � V (~Q) � r0) = ϕM(t?) � 〈〈∆→ A〉〉 � m0 .

Proof. Firstly we observe that the expression “ϕQ(t? � V (~Q) � r0)” is well-defined. Indeed,1258

by Proposition 1.5 t �� r0 is a traversal of T rav(Q) therefore the sequence t? � V (~Q) � r0,1259

which is equal to (t �� r0)
? by Lemma 1.17, does belong to T rav(Q)?.1260

We now make the assumption that ~Q is a level-2 lambda nodes (i.e., a grand-child of1261

the root ~). The proof easily generalizes to other lambda nodes by iterating the argument1262

at every lambda nodes occurring in the path from ~Q to ~.1263

Claim: (i) The set of occurrence positions of t? that are removed by the operation �1264

V (~Q) is the same as the set of positions of ϕM(t?) removed by the operation � 〈〈∆→ A〉〉.1265

(ii) The justification pointers in the sequences of nodes t? � V (~Q) are the same as those of1266

the sequence of moves ϕM(t?) � 〈〈∆→ A〉〉.1267

Indeed: (i) follows from the fact that, by definition, the range of the function ϕM1268

restricted to V (~Q) is included in M〈〈∆→A〉〉 (the set of moves of the interaction game of Q).1269

(ii) By Def. 2.11, the sequences ϕM(t?) and t? have the same justification pointers. The1270

projections � V (~Q) and � 〈〈∆→ A〉〉 both alter the pointers in the sequences ϕM(t?)1271

and t?, but they do so identically: the operation � V (~Q) (Def. 1.17) alters pointers only1272

for variable nodes that are free in V (~Q); it makes them point to the only occurrence of1273

~Q in the P-view at that point (which is also the only occurrence of a level-2 lambda node1274

in the P-view). Similarly, the operation � 〈〈∆→ A〉〉 (Def. 2.4) alters pointers only for1275

initial A-moves: it makes them point to the only occurrence of an initial B-move in the1276

P-view at that point. Further ϕM maps free variables in V (~Q) to initial A-moves, and1277

level-2 lambda nodes to initial B-moves.1278

Hence the claim holds which subsequently implies ϕM(t?) � 〈〈∆→ A〉〉 = ϕM(t? �1279

V (~Q)). Thus ϕM(t?) � 〈〈∆→ A〉〉 � m0 = ϕM(t? � V (~Q)) � m0 = ϕM(t? � V (~Q) � r0).1280

Finally, since the function ϕ is defined inductively on the structure of the computation1281

tree, the restriction of ϕM to V ~Q coincides with ϕQ.1282

The following lemma states that projecting the image of a traversal by ϕ gives the1283

image of the traversal’s core:1284

Lemma 2.8 (Core projection lemma).

ϕM(T rav(M)?) � [[Γ→ T ]] = ψM(T rav(M)�~) .

Proof. Let H be the set of nodes of τ(M) which are mapped by ψ∗(M) to moves that are1285

∼-equivalent to moves in [[Γ→ T ]]. We need to show that H = V ~`.1286
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Since ψM ⊆ ψ∗(M) and the image of ψ(M) is [[Γ→ T ]], H must contain the domain1287

of ψ(M) which is precisely V ~`. Conversely, suppose that a node n ∈ V \ (V@ ∪ VΣ) is1288

mapped by ϕ∗(M) to some move m ∈MI which is ∼-equivalent to some move in [[Γ→ T ]].1289

If m = ψM(n) then n ∈ V ~`. Otherwise, m = ψκ(�)(n) for some � ∈ Nspawn. There may1290

be several node � such that n belongs to the domain of definition of ψκ(�), w.l.o.g. we can1291

take � to be the one which is closest to the root. Let Γ(�) ` κ(�) : T (�). Suppose that1292

m is ∼-equivalent to a move from1293

- the subgame [[Γ]] of [[Γ→ T ]], then this means that n is hereditarily justified by a free1294

variable node in M and therefore n ∈ V ~`.1295

- the subgame [[T ]] of [[Γ→ T ]] thenmmust belong to the subgame Γ(�) of [[Γ(�)→ T (�)]].1296

Indeed, since �’s parent node is an application node, moves in the subgame [[T (�)]]1297

correspond to internal moves of the application. By definition of the interaction strategy1298

for the application case, such moves can only be ∼-equivalent to other internal moves1299

and thus cannot be equivalent to a move from [[T ]].1300

Consequently, n is hereditarily justified by a free variable node z in κ(�). By assumption,1301

� is the closest node to the root ~ (excluding ~ itself) for which n belongs to V �` (the1302

domain of definition of ψκ(�)). Hence z is not bound by any λ-node occurring in the path1303

to the root. Thus z ∈ V ~` and therefore n ∈ V ~`.1304

Hence H = V ~`. Consequently, for every traversal t we have ϕM(t?) � [[Γ→ T ]] = ϕM(t? �1305

V ~`) which equals ϕM(t � ~) by Lemma 1.8.1306

2.4. The correspondence theorem for the pure simply-typed lambda calculus1307

In this section, we establish a connection between the revealed semantics of a simply-1308

typed term without interpreted constants (i.e., Σ = ∅) and the traversals of its computation1309

tree: we show that the set T rav(M) of traversals of the computation tree is isomorphic to1310

the set of uncovered plays of the strategy denotation (this is the counterpart of Ong’s “Path-1311

Traversal Correspondence” Theorem [1]), and that the set of traversal cores is isomorphic1312

to the strategy denotation.1313

Preliminary lemmas1314

Notation 2.2 For every node occurrence n in a justified sequence (of nodes or of moves)1315

u we write ptrdistu(n), or just ptrdist(n) if there is no ambiguity, to denote the distance1316

between n and its justifier in u if it has one, and 0 otherwise.1317

Lemma 2.9.
(
t · n1, t · n2 ∈ T rav(M)
∧ n1 6= n2

)

=⇒ n1, n2 ∈ V
~`
λ ∧ (ψ(n1) 6= ψ(n2) ∨ ptrdist(n1) 6= ptrdist(n2)) .

Proof. Take t · n1, t · n2 ∈ T rav(M). Suppose that n1 and n2 belong to two distinct1318

categories of nodes (Nvar, N@, Nλ, NΣ, Lvar, L@, Lλ, or LΣ) then necessarily one must be1319

visited with the rule (InputVar) and the other by (InputVal)—they are the only rules with1320

a common domain of definition—thus one is a leaf-node and the other is an inner node1321

which implies that ψ(n1) 6= ψ(n2).1322
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Otherwise n1 and n2 belong to the same category of nodes and we proceed by case1323

analysis:1324

• If n1, n2 ∈ N@ then t · n1 and t · n2 are formed using the (App) rule. Since this rule1325

is deterministic we must have n1 = n2 which violates the second hypothesis.1326

• If n1, n2 ∈ L@ then the traversals are formed using the deterministic rule (Value@ 7→λ)1327

which again violates the second hypothesis.1328

• If n1, n2 ∈ NΣ then they are formed using a deterministic constant rule (see Def. 1.13).1329

• If n1, n2 ∈ LΣ then they are formed using a deterministic value-constant rule.1330

• If n1, n2 ∈ Nvar then t ·n1 and t ·n2 were formed using either rule (Lam) or (App). But1331

these two rules are deterministic and their domains of definition are disjoint. Hence1332

again the second hypothesis is violated.1333

• If n1, n2 ∈ Lvar then either the traversals were both formed using the deterministic1334

rule (Valuevar 7→λ) in which case the second hypothesis is violated; or they were formed1335

with (InputValue) in which case n1 and n2 are two different value leaves belonging1336

to V ~`
λ and justified by the same input variable node. Thus by definition of ψ,1337

ψ(n1) 6= ψ(n2).1338

• If n1, n2 ∈ Nλ then the traversals t ·n1 and t ·n2 must have been formed using either1339

rule (Root), (App), (Var) or (InputVar). Since all these rules have disjoint domains1340

of definition, the same rule must have been use to form t · n1 and t · n2. But since1341

the rules (Root), (App) and (Var) are all deterministic, the rule used is necessarily1342

(InputVar).1343

By definition of (InputVar), n1, n2 ∈ N~`
λ , the parent node of n1 and the parent1344

node of n2 all occur in xt6xy where x ∈ N~`
var denotes the pending node at t. If1345

n1 and n2 have the same parent node in τ(M) then since n1 6= n2, by definition of1346

ψ, ψ(n1) 6= ψ(n2). If their parent node is different, then n1 and n2 are necessarily1347

justified by two different occurrences in t therefore ptrdist(n1) 6= ptrdist(n2).1348

• If n1, n2 ∈ Lλ then either the traversals t ·n1 and t ·n2 were formed using (Valueλ7→var)1349

or they were formed with (Valueλ7→@) but this is impossible since these two rules are1350

deterministic and n1 6= n2.1351

The function ϕM regarded as a function from the set of vertices V \ V@ of the compu-1352

tation tree to moves in arenas is not injective. (For instance the two occurrences of x in1353

the computation tree of λfx.fxx are mapped to the same question move.) However the1354

function ϕM defined on the set of @-free traversals is injective, and similarly the function1355

ψM defined on the set of traversal cores is injective as the following lemma shows:1356

Lemma 2.10 (ψM and ϕM are injective). For every two traversals t1 and t2:1357

(i) If ϕ(t?1) = ϕ(t?2) then t?1 = t?2 ;1358

(ii) if ψ(t1 � ~) = ψ(t2 � ~) then t1 � ~ = t2 � ~ .1359

Proof. (i) The result is trivial if either t1 or t2 is empty. Otherwise, suppose that t?1 6= t?21360

then necessarily t1 6= t2. W.l.o.g. we can assume that the two traversals differ only by1361

their last node (or last node’s pointer). Thus we have t1 = t · n1 and t2 = t · n2 for some1362
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sequence t and some occurrences n1, n2 where either n1 and n2 are two distinct nodes in1363

the computation tree or ptrdist(n1) 6= ptrdist(n2).1364

If n1 = n2 and ptrdist(n1) 6= ptrdist(n2) then n1, n2 are not @-nodes nor Σ-nodes (since1365

for such nodes we would have ptrdist(n1) = 0 = ptrdist(n2)). By definition of the sequence1366

ϕ(t1) we have ptrdist(ϕ(n1)) = ptrdist(n1) and similarly ptrdist(ϕ(n2)) = ptrdist(n2) thus1367

ϕ(t′ ·n1) 6= ϕ(t′ ·n2). Finally since n1, n2 6∈ (N@∪NΣ) we also have ϕ((t′ ·n1)
?) 6= ϕ((t′ ·n2)

?).1368

Hence ϕ(t?1) 6= ϕ(t?2).1369

If n1 6= n2 then by Lemma 2.9 n1, n2 are not @-nodes or Σ-nodes (since such nodes1370

are not hereditarily justified by the root) and we have either ptrdist(n1) 6= ptrdist(n2) or1371

ϕ(n1) = ψ(n1) 6= ψ(n2) = ϕ(n2). Hence ϕ(t?1) 6= ϕ(t?2).1372

(ii) Suppose that t1 � ~ 6= t2 � ~ then necessarily t1 6= t2. W.l.o.g. we can assume that the1373

two sequences differ only by their last occurrence. Hence we have t1 = t ·n1, t2 = t′ ·n2 for1374

some sequence t and some nodes n1, n2 where either n1 6= n2 or ptrdist(n1) 6= ptrdist(n2).1375

If n1 6= n2 then Lemma 2.9 gives ψ(t1 � ~) 6= ψ(t2 � ~). Otherwise n1 = n2 and
ptrdist(n1) 6= ptrdist(n2). The only rules that can visit the same node with two different
pointers are (InputVar) and (InputValue), thus n1 and n2 must be in V ~`

λ . Hence:

ψ(ti � ~) = ψ(t � ~) · ψ(ni) for i ∈ {1..2}

where ptrdistψ(ti�r)
(ψ(ni)) = ptrdistti�r(ni).1376

Furthermore, since ptrdist(n1) 6= ptrdist(n2) and t1<n1
= t2<n2

we have ptrdistt1�~(n1) 6=1377

ptrdistt2�~(n2). Thus ψ(t1 � ~) 6= ψ(t2 � ~).1378

Corollary 2.1.1379

(i) ϕ defines a bijection from T rav(M)? to ϕ(T rav(M)?) ;1380

(ii) ψ defines a bijection from T rav(M)�~ to ψ(T rav(M)�~) .1381

The following lemma says that extending a traversal locally also extends the traversal1382

globally: the traversal t of M can be extended by extending a sub-traversal t′ of some1383

subterm of M . This is not obvious since t′ is a subsequence of t which means that the1384

nodes in t′ are also present in t with the same pointers but with some other nodes interleaved1385

in between. However these interleaved nodes are inserted in a way that allows us to apply1386

on t the rule that was used to extend the sub-traversal t′:1387

Lemma 2.11 (Sub-traversal progression). Let ~j be a lambda node in τ(M), t = t′ · tω be1388

a justified sequence of nodes of τ(M), and rj be an occurrence of ~j in t different from tω.1389

If1390

1. t′ is a traversal of τ(M),1391

2. tω appears in t �� rj,1392

3. t �� rj is a traversal of τ(M (~j )) and its last node is visited using a rule different from1393

(InputVar) and (InputVarval),1394
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then t is a traversal of τ(M).1395

Proof. Let tj = t �� rj . Since t′ is a traversal of M , by Prop. 1.5 the sequence t′ �� rj (which1396

is also the immediate prefix of tj) is a traversal of τ(M (~j )). We proceed by case analysis1397

on the last rule used to produce the traversal tj and we show that t is a traversal of M :1398

• (Empty), (Root). These cases do not occur since |tj| ≥ 2. Indeed, tj contains at least1399

tω and rj which are two different occurrences.1400

• (Lam) We have tj = . . . · λξ · n. Since tj v t, the node λξ also occurs in t. Therefore1401

using the rule (Lam) in M we can form the traversal t6λξ · n. But then we have (t6λξ · n) �1402

� rj = t6λξ �� rj · n = tj6λξ · n = tj = t �� rj. Thus, since t’s last node and n both appear1403

in t �� rj, this implies that t6λξ · n = t. Hence t is a traversal of M .1404

• (App) tj = . . . · λξ · @ · n. The same reasoning as in the previous case permits us to1405

conclude.1406

• (Value@ 7→λ) tj = . . . · λξ ·@ . . . v
v

@ · v

v

λξ. Since tj v t, the nodes λξ, @, v@ and vλξ1407

all appear in t. Moreover, since λξ is a lambda node appearing in t �� rj , its immediate1408

successor must also appear in t �� rj. Thus the two nodes λξ and @ are also consecutive1409

in t. Hence we can use the rule (Value@ 7→λ) in the computation tree τ(M) to produce the1410

traversal t6v
λξ
· n and by the same reasoning as in the previous case, we conclude that1411

necessarily t = t6v
λξ
· n.1412

• (Valuevar 7→λ) tj = . . . · λξ · x . . . v
v

x · v

v

λξ. This case is identical to the previous case.1413

• (Valueλ7→@) tj = . . . ·@ · λz . . . v
v

λz · v

v

@. Same as in the previous case by observing1414

that @ and λz are necessarily consecutive in t.1415

• (InputValue) and (InputVar). By assumption these cases do not happen.1416

• (Var) tj = . . . · p · λx . . . xi
i

· ληi

i

for some variable xi ∈ N
@`
var .1417

In general, two nodes p and λx appearing consecutively in tj are not necessarily consecutive1418

in t. For in M , t can “jump” from p to a node that do not belong to the subterm M (~j),1419

and thus not appearing in tj = t �� rj. This situation cannot happen here, however. Indeed,1420

suppose that t6p extends to t6p ·m in τ(M). All the nodes in the thread of ληi, in tj, are1421

hereditarily justified by the same initial @-node α which necessarily occurs after rj (the1422

first node of tj). Consequently p belongs to N@`
var and therefore the traversal t6p ·m must1423

have been formed using the rule (Var) in τ(M). Since p appears in t �� rj, by Lemma1424

1.14(i), all the nodes in the thread of p in t appear in t �� rj . Thus m appears in t �� rj1425

(since by O-visibility it points in the thread of p). Hence (t6p ·m) �� r0 = t<p �� r0 · p ·m1426

which implies that m is precisely the occurrence λx.1427

Hence the nodes p, λx, xi and ληi all appear in t with the two nodes p and λx appearing1428

consecutively. We can therefore use the rule (Var) in M to form the traversal t.1429

• (Valueλ7→var) Same proof as in the previous case.1430

• (Σ)/(Σ-var) Same as (App) and (Var).1431

• (Σ-Value) Same as (Valueλ7→var).1432
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The correspondence theorem1433

We now state and prove the correspondence theorem for the simply-typed lambda1434

calculus without interpreted constants (Σ = ∅). This theorem establishes a correspondence1435

between the denotation of a term in the intentional game model and the set of traversals of1436

its computation tree. The result extends immediately to the simply-typed lambda calculus1437

with uninterpreted constants since we can regard constants as being free variables.1438

Theorem 2.2 (The Correspondence Theorem). For every simply-typed term Γ ` M : T ,1439

ϕM defines a bijection from T rav(M)? to 〈〈Γ `M : T 〉〉s and ψM defines a bijection from1440

T rav(M)�~ to [[Γ `M : T ]]:1441

ϕM : T rav(Γ `M : T )?
∼=
−→ 〈〈Γ `M : T 〉〉

s

ψM : T rav(Γ `M : T )�~
∼=
−→ [[Γ `M : T ]] .

Remark 2.1 By Corollary 2.1, we just need to show that ϕM and ψM are surjective, that
is to say: ϕM(T rav(M)?) = 〈〈Γ `M : T 〉〉s and ψM(T rav(M)�~) = [[Γ `M : T ]]. Moreover
the former implies the latter, indeed:

[[Γ `M : T ]] = 〈〈Γ `M : T 〉〉s � [[Γ→ T ]] by (7) from Sec. 2.1.5

= ϕM(T rav(M)?) � [[Γ→ T ]] by assumption

= ψM (T rav(M)�~) by Lemma 2.8.

Therefore we just need to prove ϕM(T rav(M)?) = 〈〈Γ `M : T 〉〉s.1442

Since the proof is rather technical, we first give an overview of the argument: We1443

proceed by induction on the structure of the computation tree. The only non-trivial case1444

is the application; the computation tree τ(M) has the following form:1445

λξ

@

τ(N0) . . . τ(Np)

1446

A traversal of τ(M) goes as follows: It starts at the root λξ of the tree τ(M) (rule1447

(Root)), visits the node @ (rule (Lam)) and the root of τ(N0) (rule (App)) and then proceeds1448

by traversing the subtree τ(N0). While doing so, some variable yi bound by τ(N0)’s root1449

may be reached, in which case the traversal is interrupted by a jump to τ(Ni)’s root1450

(performed with the rule (Var)) and the process goes on with τ(Ni). Again, if the traversal1451

encounters a variable bound by τ(Ni)’s root then the traversal of τ(Ni) is interrupted and1452

the traversal of τ(N0) resumes. This schema is repeated until the traversal of τ(N0) is1453

completed4.1454

4Since we are considering simply-typed terms, the traversal does indeed terminate. However this will
not be true anymore in the PCF case.
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The traversal of M is therefore made of an initialization part followed by an interleaving1455

of a traversal of N0 and several traversals of Ni for i = 1..p. This schema is reminiscent of1456

the way the evaluation copy-cat map ev works in game semantics.1457

The crucial idea of the proof is that every time the traversal jumps from one sub-1458

term to another, the jump is permitted by one of the “copy-cat” rules (Var), (Valueλ7→@),1459

(Valuevar 7→λ), (Value@ 7→λ), or (Valueλ7→var). We show by a second induction that these copy-1460

cat rules implement precisely the copy-cat evaluation strategy ev.1461

Proof. Let Γ ` M : T be a simply-typed term where Γ = x1 : X1, . . . xn : Xn. We1462

assume that M is already in η-long normal form. By remark 2.1 we just need to show that1463

ϕM(T rav(M)?) = 〈〈Γ `M : T 〉〉s. We proceed by induction on the structure of M :1464

• (abstraction) M ≡ λξ.N : Y → B where ξ = ξ1 : Y1, . . . ξn : Yn. On the one hand we1465

have:1466

〈〈Γ ` λξ.N : T 〉〉s = Λn(〈〈ξ,Γ ` N : B〉〉s)

' 〈〈ξ,Γ ` N : B〉〉s .

On the other hand, the computation tree τ(N) is isomorphic to τ(λξ.N) (up to renaming1467

of the computation tree’s root), and T rav(N) is isomorphic to T rav(λξ.N). Hence we1468

can conclude using the induction hypothesis.1469

• (variable) M ≡ xi. Since M is in η-long normal form, x must be of ground type. The1470

computation tree τ(M) and the arena 〈〈Γ→ o〉〉s are represented below (value leaves and1471

answer moves are not represented):1472

λ

xi

q0

q1 q2 . . . qn

1473

Let πi denote the ith projection of the interaction game semantics. We have:

〈〈M〉〉
s
= πi = Pref({q0 · q

i · vqi · vq0 | v ∈ D}) .

It is easy to see that traversals of M are precisely the prefixes of λ · xi · vxi
· vλ. Since M

is in β-normal we have T rav(M)? = T rav(M), and since ϕM(λ) = q0 and ϕM(xi) = qi

we have:

ϕM(T rav(M)?) = ϕM(T rav(M)) = ϕM(Pref(λ · xi · vxi
· vλ)) = 〈〈M〉〉s .

• (@-application) M = N0N1 . . . Np : o where N0 is not a variable. We have the typing1474

judgments Γ ` N0N1 . . . Np : o and Γ ` Ni : Bi for i ∈ 0..p where B0 = (B1, . . . , Bp, o)1475

and p ≥ 1.1476

The tree τ(M) has the following form:1477
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λ[~]

@

λy1 . . . y
[~0]
p

τ(N0)

[~1]

τ(N1)

. . . [~p]

τ(Np)

1478

where ~j denote the root of τ(Nj) for j ∈ {0..p}.1479

We have:

〈〈Γ `M : o〉〉s = 〈〈〈Γ ` N0 : B0〉〉s, . . . , 〈〈Γ ` Np : Bp〉〉s〉
︸ ︷︷ ︸

Σ

‖ ev .

In the following, we use the notations introduced in Fig. 1 from section 2.1.3 which fixes1480

the names of the different games involved in the interaction strategy 〈〈M〉〉s. In particular1481

the games A, B and C are defined as:1482

A = X1 × . . .×Xn

B = ((B′
1 × . . .× B

′
p)→ o′)

︸ ︷︷ ︸

B0

×B1 × . . .×Bp

C = o .

Let q0 and q′0 be the initial question of C and B0 respectively.1483

⊆ We first prove that 〈〈Γ `M : T 〉〉s ⊆ ϕM(T rav(M)?). Suppose u ∈ 〈〈Γ `M : T 〉〉s.1484

We give a constructive proof that there is a traversal t such that ϕM(t?) = u by1485

induction on u.1486

For the base case u = ε, take t to be the empty traversal formed with (Empty).1487

Step case: Suppose that u = u′ ·m ∈ 〈〈Γ `M : T 〉〉s for some move m ∈MT where1488

u′ = ϕM(t′?) for some traversal t′ of τ(M).1489

By unraveling the definition of u ∈ 〈〈Γ `M : T 〉〉s we have:1490

(a) u ∈ JT ;
(b) For every occurrence b in u of an initial Bk-move, for some k ∈ {0..p}:

{
u � T 0k � b ∈ 〈〈Nk〉〉s ,
u � T 0k′ � b = ε for every k′ ∈ {0..p} \ {k} ;

(c) u � B0 = u � B1, . . . , Bp, C .







(8)

We recall that each m ∈ MT is an equivalence class of moves fromMT . For every1491

game A appearing in the interaction game T we will write “m ∈ A” to mean that1492
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some element of the class m belongs to the set of moves MA. Similarly, for every1493

sub-interaction game T ′ of T , we write “m ∈ T ′” to mean that some element of1494

the class m belongs to the set of moves MT ′. We proceed by case analysis on m:1495

We either have m ∈ C or m ∈ T 0; in the last case m is either in A, a superficial1496

internal move in B or a profound internal move in B:1497

– Suppose m ∈ C. Moves in C are played by the standard strategy ev that does1498

not contain any internal move. Hence m is either q0 or vq0 for some v ∈ D.1499

Suppose that m = q0. Since q0 can occur only once in u we have u = q0 and1500

the traversal t = λ[~] formed with (Root) clearly satisfies ϕ(t?) = u.1501

Otherwise m = vq0. This P-move is played by the copy-cat strategy ev therefore1502

it is the copy of some answer vq′0 to the question q′0 from the sub-game o′. The1503

move vq′0 is necessarily the immediate predecessor of m in u. (Indeed the play1504

u6vq′0
� A,B is complete since its first move q′0 is answered by vq′0 , and therefore1505

u6vq′0
� T 0 is also complete by Lemma 2.5; thus no profound internal move can1506

be played between vq′0 and vq0 , and therefore these two moves are consecutive.)1507

Hence by the induction hypothesis the last move in t′ is ϕ(vq′0) = vλy1 . The rules1508

(Valueλ7→@) and (Value@ 7→λ) permits us to extend the traversal t′ to t′ · v@ · vλξ1509

where v@ and vλξ point to the second and first node of t′ respectively. Clearly1510

we have ϕM((t′ · v@ · vλξ)
?) = u.1511

– Suppose m ∈ T 0 andm is an initial move in B0. Then necessarily m is q′0 ∈ [[o′]],1512

the copy-cat move of the initial move q0 ∈ C of u. Hence u = q0 · q
′
0. The rules1513

(Root), (App) and (Lam) permit us to build the traversal t = λ[~] · @ · λy[~0]
1514

which clearly satisfies ϕM(t?) = u.1515

– Suppose m ∈ T 0 and m is an initial move in Bk for some k ∈ {1..p}. Then m1516

is necessarily a copy-cat move played by the evaluation strategy, and the move1517

m1 immediately preceding m in u is an initial move of the component B′
k of1518

B0.1519

Thus since ϕM(t′ω) = m1, t′ω must be an occurrence of the node yk—the kth1520

variable bound by λy. We can thus form, with the rule (Var), the traversal1521

t = t′ ·~k satisfying ϕM(t?) = ϕM(t′?) ·m = u.1522

– Suppose m ∈ T 0 and m is not initial in B. In u � T 0, m must be hereditarily1523

justified by some initial move b in Bk for some k ∈ {0..p}. Since u � T 0k � b ∈1524

〈〈Nk〉〉s, the outermost induction hypothesis gives us:1525

u � T 0k � b = ϕNk
(t?k) (9)

for some traversal tk ∈ T rav(Nk) where w.l.o.g. we can assume that tωk 6∈ V@.
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We have:

ϕM(tωk ) = (ϕM(t?k))
ω since tωk 6∈ V@

= ((u′ ·m) � T 0k � b)ω by (9)

= ((u′ � T 0k � b) ·m))ω since m is h.j. by b and belongs to T 0k

= m .

Take t = t′ · tωk where tωk points in t′ to the image by ϕM of the occurrence1526

justifying m in u. Since tωk 6= @ we have t? = t′? · tωk where tωk justifier in t′? is1527

the same as its justifier in t.1528

Hence we have ϕM(t?) = ϕM(t′?)·ϕM(tωk ) which, by the innermost I.H. together1529

with the previous equation, equals u′ ·m where m’s justifier in u′ corresponds1530

to ϕM(tωk )’s justifier in ϕM(t′?). Consequently:1531

ϕM(t?) = u . (10)

1532

We are half-done at this point, it remains to show that t is indeed a traversal1533

of τ(M). Let rk denote the occurrence of the root ~k in t that is mapped to1534

the occurrence b in ϕM(t?). We make the following claim:1535

tk = t �� rk . (11)

Indeed we have:

ϕNk
(t?k) = u � T 0k � b by (9)

= ϕM(t?) � T 0k � b by (10)

= ϕNk
(t? � V (~k) � rk) by Lemma 2.7.

Since ϕNk
is a bijection from T rav(Nk)

? to ϕNk
(T rav(Nk)

?) (by Corollary 2.1)1536

this implies that t?k = t? � V (~k) � rk which in turn equals (t �� rk)
? by Lemma1537

1.17 from Sec. 1.3.6. But since tk and t do not end with an @-node, this implies1538

equality (11).1539

We now show that t is indeed a traversal by a case analysis of the rule used to1540

visit the last occurrence of tk in the tree τ(Nk):1541

(a) Suppose the rule used to visit tωk is neither (InputVar) nor (InputVarval).1542

Then by Lemma 2.11, t is a traversal of M .1543

(b) Suppose tωk is visited with (InputVar). Then tk is of the form

tk = . . . · z · . . . · tωk

for some input-variable z ∈ N~k`
var occurring in xtky and where tωk ∈ N

~k`
λ .1544
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Thus:
u = . . . · ψNk

(z)
= m3

· . . . · ψNk
(tωk )

= m

.

The occurrence tωk is hereditarily enabled by the root ~k itself enabled by1545

an application node, thus tωk is not hereditarily enabled by the root ~. Since1546

only nodes that are hereditarily enabled by the root are mapped to move1547

in A we know that ψNk
(tωk ) is not played in A and therefore ψNk

(tωk ) ∈ Bk.1548

Similarly we have ψNk
(z) ∈ Bk.1549

Now consider the top-most composition in the interaction strategy 〈〈M〉〉s—1550

that of the interaction strategy Σ : A → B with the evaluation copy-1551

cat strategy ev : B → o. Consider the sub-sequence u � A,B,C of1552

u consisting only of moves involved in this top-most composition (i.e.,1553

the internal moves coming from other compositions at deeper level in the1554

revealed semantics are removed). Since z is a variable node, the move1555

m3 = ψNk
(z) ∈ Bk is a P-move with respect to the game [[A→ Bk]], and1556

therefore it is an O-move in the game [[B → o]]. Consequently the strategy1557

ev is responsible to play at u6m3 � A,B,C. Let m2 denote the move played1558

by ev which immediately follows m1 in u � A,B,C.1559

We claim that m3 and m2 are also consecutive in u. That is to say that no1560

internal moves generated from the other compositions at deeper levels in1561

the interaction strategy can ever be played between m3 and m2. Indeed,1562

firstly the strategy ev is a pure standard strategy thus it does not play1563

any (profound) internal move. Furthermore, suppose that the strategy Σ1564

comes from the composition Σl‖Σr of two interaction strategies Σl : A→ D1565

and Σr : D → B for some game D, then by the Switching Condition for1566

function-space game [6] the Opponent cannot switch of component, and1567

thus the move following m3 in the interaction sequence u � A,D,B must1568

belong to B. Hence internal moves from D cannot be played immediately1569

after m3.1570

Similarly, we can show that the move m is played by the strategy ev and1571

is the copy of the move m1 immediately preceding it in u � A,B,C as well1572

as in u.1573

Hence the sequence u has the following form:

u = . . . ·m3 ·m2 · . . . ·m1

i

·m

i

.

Consequently we have:

tk = . . . · z · . . . · tωk

i

t′ = . . . · z · λy · . . . · y
i

.

The first equation implies that tωk is the ith child of z in the computation1574

tree, thus since z 6∈ N~`, we can apply the (Var) rule to the second equation1575

which produces the traversal of τ(M):1576

t′ · tωk = . . . · z · λy · . . . · y
i

· tωk

i
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which is precisely the sequence t. Hence t is indeed a traversal of τ(M).1577

The diagram on Fig. 3 shows an example of such interaction sequence u.

A −→ ((B′
1 → o′) × B1) −→ o

q0(λξ) O

O q′0(λz) P

P m3(z) O

O m2(λy) P

P m1(y) O

O m(tωk ) P

@

Figure 3: Example of a sequence u � A, B, C for u ∈ 〈〈M〉〉s and l = 1.

1578

(c) Suppose tk’s last move is visited with the rule (InputVarval) then the proof1579

is the same as in the previous case but with (InputVarval) substituted for1580

(InputVar).1581

⊇ The converse, ϕM(T rav(M)?) ⊆ 〈〈M〉〉s, is the easy part of the proof.1582

Let u be as sequence of ϕM(T rav(M)?). Then u = ϕM(t?) for some traversal t1583

of τ(M). To show that u is a position of 〈〈Γ `M : T 〉〉s we have to prove that it1584

satisfies the three conditions of (8):1585

– (a) By definition, ϕM maps justified sequences of nodes to justified sequences1586

of moves from MT therefore ϕM(t?) ∈ JT .1587

– (b) Take an initial B-move b ∈ Bk, for some k ∈ {0..p}, occurring in ϕM(t?).
There is a corresponding occurrence rk in t of a level-2 lambda node ~k of
τ(M). By definition, the function ϕM maps nodes from the subtree of τ(M)
rooted at ~k′ , for every k′ ∈ {0..p}, to moves of the game 〈〈Γ→ Bk′〉〉s that
are hereditarily justified by some occurrence of ϕM(~k′). Hence for every k′ ∈
{0..p} \ {k} we clearly have ϕM(t?) � T 0k′ � b = ε. Moreover:

u � T 0k � b = ϕM(t?) � T 0k � b

= ϕM(t? � V (~k) � rk) by Lemma 2.7

= ϕM((t �� rk)
?) by Lemma 1.17

= ϕNk
((t �� rk)

?) since t �� rk is a traversal of Nk by Prop. 1.5

∈ ϕNk
(T rav(Nk)

?)

= 〈〈Nk〉〉s by the induction hypothesis.

– (c) We can show that ϕM(t?) � B0 = ϕM(t?) � B1, . . . , Bp, C by a trivial1588

induction on the traversal t. (This property holds because of the way the1589

traversal rules mimic the behaviour of the evaluation strategy.)1590
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• (Var-application) M = xiN1 . . . Np : o.1591

The revealed denotation is 〈〈Γ `M : o〉〉s = 〈πi, 〈〈Γ ` N1 : B1〉〉s, . . . , 〈〈Γ ` Np : Bp〉〉s〉
︸ ︷︷ ︸

Σ

;∅,{1..p} ev1592

and the computation tree is1593

λ[~]

xi

τ(N1)
[~1] . . . τ(Np)

[~p]

.1594

We use the notations of Fig. 1 for names of the games involved in the interaction strategy.
The composition of Σ with ev takes place on the following games:

A
︷ ︸︸ ︷

X1 × . . .

Xi
︷ ︸︸ ︷

((B′′
1 × . . .×B

′′
p )→ o′′) . . .×Xn

Σ
−→

B
︷ ︸︸ ︷

B0
︷ ︸︸ ︷

((B′
1 × . . .× B

′
p)→ o′)×B1 × . . . Bp

ev
−→

C
︷︸︸︷
o

Let q0, q
′
0 and q′′0 be the initial question of C, B0 and Xi respectively.1595

〈〈Γ `M : T 〉〉s ⊆ ϕM(T rav(M)?). We show (constructively) by induction that for every1596

v ∈ Σ‖ev, there is some traversal t such that the sequence u = hide(v, {0..p}, {0})1597

equals ϕM(t?).1598

The base case v = ε is trivial. Suppose that v = v′·m ∈ Σ‖ev where hide(v′, {0..p}, {0}) =1599

ϕM(t′?) for some traversal t′ of τ(M) and move m ∈MT . Unraveling the definition1600

of v ∈ Σ‖ev gives1601

- v ∈ JT ;
- for every occurrence b in v of an initial Bk-move for some k ∈ {0..p}:
v � T 00 � b ∈ πi if k = 0 and v � T 0k � b ∈ 〈〈Nk〉〉s if k > 0,
and ∀k′ ∈ {0..p} \ {k}. v � T 0k′ � b = ε;

- and v � B0 = v � B1, . . . , Bp, C .







(12)

We proceed by case analysis on m. It is either played in A, B or C.1602

1. m ∈ C. The proof is the same as in the @-application case except that the rules1603

(Valueλ7→var) and (Valuevar 7→λ) are used instead of (Valueλ7→@) and (Value@ 7→λ)1604

respectively.1605

2. m is a superficial internalB-move. Then hide(v, {0..p}, {0}) = hide(v′, {0..p}, {0})1606

so we can directly conclude from the I.H.1607

3. m is a profound internal B-move. Then necessarily m belongs to Bk for some k ∈1608

{1..p} (since πi does not contain internal moves). Thus m must be hereditarily1609

justified by some b ∈ Bk. The treatment of this case is identical to the @-1610

application case where m ∈ T 0 is not initial in B and b ∈ Bk for some k ∈ {0..p}.1611
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4. m ∈ A. Let b denote the initial Bk-move that hereditarily justifies m for some1612

k ∈ {0..p}. If k > 0 then the treatment is the same as in case 3. Otherwise1613

b ∈ B0:1614

– Suppose m is an occurrence of the initial o′′-move q′′0 . Then m is played by1615

πi and therefore is the copy of q′0 itself the copy of the initial move q0 of v.1616

Thus v = q0 · q
′
0 · q

′′
0 and u = q0 · q

′′
0 . The traversal t = λ[~] · xi formed using1617

the rules (Root) and (Lam) meets the requirement.1618

– Otherwise since v � b ∈ πi we have v � b � Xi = v � b � B0 therefore m must1619

necessarily be hereditarily justified by the first occurrence of q′′0 in v.1620

∗ Suppose m is an  -question. Then the preceding move in v is necessarily1621

a #-move also played in A by the strategy πi and therefore it is also1622

hereditarily justified by the first occurrence of q′′0 .1623

By definition of ϕM , the last node in t′ is a variable node (if the preceding1624

move is a #-question) or a value-leaf of a lambda node (if the preceding1625

move is a #-answer) that is hereditarily justified by the node xi. Hence1626

the rule (InputVar) can be applied at t′.1627

Let m′ be m’s justifier in v′ and α′ be the corresponding node in t′ that
ϕM maps to m′. Suppose m is the ith move enabled by m′ in the arena
and let α be the ith child node of α′ in τ(M). By definition of ϕM we
have ϕM(α) = m. We want to show that we can use the rule (InputVar)
to append α to the traversal t′. Since we have v � A,C ∈ [[M ]], by O-
visibility m′ appears in xv′ � A,Cy, and by the induction hypothesis we
have v′ � A,C = ψM(t′ � r). Hence

m′ ∈ xψM(t′ � r)y = ψM(xt′ � ry)

= ϕM(xt′ � ry) since ϕM and ψM coincide on V ~`,

= ϕM(xt′y) by Lemma 1.18.

This implies that α′ appears in xt′y which allows us to use the rule1628

(InputVar) to form the traversal t = t′·α satisfying ϕM(t?) = hide(v, {0..p}, {0}).1629

∗ Suppose m is a #-answer. The same argument as above holds but using1630

(InputValue) instead of (InputVar).1631

∗ Suppose m is an  -question. We proceed identically using the rule (Lam)1632

instead of (InputVar). The proof that α′ appears in the P-view pt′q goes1633

as follows:1634

Let pvq denote the core of the interaction sequence v [12]. By P-visibility
in v � A,C, m occurs in pv′ � A,Cq. Further we have pv′ � A,Cq = pv′q �

A,C [12], and clearly pv′q � A,C equals phide(v′, {0..p}, {0})q � A,C.
Hence

m′ ∈ pϕM(t′?)q � A,C v pϕM(t′?)q .

This implies that α′ occurs in pt′?q, which is a subsequence of pt′q by (1).1635

(See Sec. 1.3.5).1636
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∗ If m is a #-answer then we proceed as above but using the rule (Value)1637

instead.1638

ϕM(T rav(M)?) ⊆ 〈〈M〉〉s. Let t be some traversal of τ(M). To show that ϕM(t?) is1639

a position of 〈〈Γ `M : T 〉〉s we have to prove that ϕM(t?) = hide(v, {0..p}, {0})1640

for some v satisfying condition (12). It suffices to take v = gΣ,ev(ϕM(t?)) where1641

gΣ,ev denotes the function defined in Sec. 2.1.4 that transforms plays of the1642

syntactically-revealed semantics to their corresponding plays of the fully-revealed1643

semantics. The rest of the argument is the same as in the @-application case.1644

Corollary 2.3. If M is in β-normal form then for every traversal t, ϕM(t) is a maximal1645

play if and only if t is a maximal traversal.1646

Proof. If M is in β-normal form then T rav(M)�~ = T rav(M) therefore ϕ defines a bi-1647

jection on T rav(M). Let t be a traversal such that ϕ(t) is a maximal play. Let t′ be1648

a traversal such that t 6 t′. By monotonicity of ϕ we have ϕ(t) 6 ϕ(t′) which implies1649

ϕ(t) = ϕ(t′) by maximality of ϕ(t) which in turn implies t′ = t by injectivity of ϕ. The1650

other direction is proved identically using injectivity and monotonicity of ϕ−1.1651

The diagram on Fig. 4 recapitulates the main results of this section.

T rav(M)? 〈〈M〉〉s

T rav(M)

T rav(M)�~ [[M ]]

? = −@− Σ

+ @ + Σ

� ~

ϕM

ϕ−1
M

ϕM

ϕ−1
M

full uncovering � [[Γ→ T ]]

where an arrow ‘A
f
−→ B’ indicates that f(A) = B.

Figure 4: Transformations involved in the Correspondence Theorem.

1652

Example 2.5. Take M = λfz.(λgx.fx)(λy.y)(fz) : ((o, o), o, o). The figure below repre-1653

sents the computation tree (left tree), the arena [[((o, o), o, o)]] (right tree) and ψM (dashed1654

line). (Only question moves are shown for clarity.) The justified sequence of nodes t defined1655

hereunder is an example of traversal:1656

λfz

@

λgx

f [1]

λ[2]

x

λy

y

λ[3]

f [4]

λ[5]

z

q0

q1

q2

q3

ψM

t = λfz ·@ · λgx · f [1] · λ[2] · x · λ[3] · f [4] · λ[5] · z

t � λfz = λfz · f [1] · λ[2] · f [4] · λ[5] · z

ϕM(t � λfz) = q0 · q1 · q2 · q1 · q2 · q3 ∈ [[M ]] .

1657
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Remark 2.2 Observe that the way we have defined traversals, the Opponent, contrary1658

to the Proponent, is not required to play deterministically, let alone innocently. It is only1659

required that he plays visibly (i.e., his justifiers must appear in the O-view) and respects1660

well-bracketing. This means that the game-denotation given by the Correspondence The-1661

orem also accounts for contexts that are not simply-typed terms. This indeed corresponds1662

to the standard innocent game model of PCF: the morphisms of the category Cib are1663

P-innocent strategies but not O-innocent. The addition of O-knowing-plays in the denota-1664

tions is conservative for observational equivalence because the full-abstraction result holds1665

in the category quotiented by the intrinsic preorder, and in the definition of the preorder,1666

the “test” strategy α ranges over innocent strategies only.1667

3. Extension to PCF and IA1668

In this section, we show how to extend the game-semantic correspondence established1669

for the lambda calculus to other languages such as PCF and IA.1670

3.1. PCF fragment1671

The Y combinator needs a special treatment. In order to deal with it, we use an1672

idea from Abramsky and McCusker’s tutorial on game semantics [11]: we consider the1673

sublanguage PCF1 of PCF in which the only allowed use of the Y combinator is in terms1674

of the form Y (λxA.x) for some type A. We will write ΩA to denote the non-terminating1675

term Y (λxA.x) for a given type A.1676

We introduce the syntactic approximants to YAM :1677

Y 0
AM = Γ ` ΩA : A

Y n+1
A M = M(Y nM) .

For every PCF term M and natural number n, we define Mn to be the PCF1 term obtained1678

from M by replacing each subterm of the form Y N with Y nNn. We then have [[M ]] =1679
⋃

n∈ω [[Mn]] [11, lemma 16].1680

3.1.1. Computation tree1681

In order to define the notion of computation tree for PCF terms, we first extend the
inductive definition of computation tree for simply-typed terms (Def. 1.2) to PCF1 terms
by adding the new inductive case:

τ(Ω(A1,...,An,o)) = λxA1
1 . . . xAn

n .⊥

where ⊥ is a special constant representing the non-terminating computation of ground1682

type Ωo.1683

We now introduce a partial order on the set of trees. A tree t is formally defined by
a labelling function t : T → L where T , called the domain of t and written dom(t), is a
non-empty prefix-closed subset of some free monoid X∗ and L denotes the set of possible
labels. Intuitively, T represents the structure of the tree—the set of all paths—and t is
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the labelling function mapping paths to labels. Trees are ordered using the approximation
ordering [13, section 1]: we write t′ v t if the tree t′ is obtained from t by replacing some
of its subtrees by ⊥. Formally:

t′ v t ⇐⇒ dom(t′) ⊆ dom(t) ∧ ∀w ∈ dom(t′).(t′(w) = t(w) ∨ t′(w) = ⊥) .

The set of all trees together with the approximation ordering form a complete partial order.1684

Here we take L to be the set of labels consisting of the Σ-constants, @, the special
constant ⊥, variables, and abstractions of any sequence of variables. It is easy to check
that the sequence of computation trees (τ(Mn))n∈ω is a chain. We can therefore define
the computation tree of a PCF term M to be the least upper-bound of the chain of
computation trees of its approximants:

τ(M) =
⋃

n∈ω

(τ(Mn))n∈ω .

In other words, we construct the computation tree by expanding ad infinitum any sub-1685

term of the form YM . Thus for a term of the form YAF with A = (A1, . . . , An, o), the1686

computation tree is the unique (up to alpha-conversion) infinite tree that is solution of the1687

equation:1688

τ(YAF ) = λxA.τ(F ) τ(YAF ) τ(x1) . . . τ(xn) (13)

where x = x1 . . . xn are fresh variables.1689

We will write (CT,v) to denote the set of computation trees of PCF terms ordered by1690

the approximation ordering v defined above. Clearly (CT,v) is also a complete partial1691

order.1692

Example 3.1. TakeM = Y (λfx.fx) where f : (o, o) and x : o. Its computation tree τ(M),
is the tree representation of the η-long nf of the infinite term (λfx.fx)((λfx.fx)((λfx.fx)(. . ..
It is the unique (up to alpha conversion) solution of the following equation on trees:

τ(M) = λy

@

λfx

f

λ

x

τ(M) λ

y

The remaining operators of PCF are treated as standard constants and the correspond-
ing computation trees are constructed from the η-long normal form in the standard way.
For instance the diagram below shows the computation tree for cond b x y (left) and λx.5
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(right):
λbxy

cond

λ

b

λ

x

λ

y

λ

5

The node labelled 5 has, like any other node, children value-leaves which are not represented1693

on the diagram above for simplicity.1694

3.1.2. Traversal1695

New traversal rules are added to interpret PCF constants. The arithmetic constants1696

are traversed as follows:1697

• (Nat) If t · n is a traversal where n denotes a node labelled with some numeral1698

constant i ∈ N then t · n · in is also a traversal where in denotes the value-leaf of m1699

corresponding to the value i ∈ N.1700

• (Succ) If t · succ is a traversal and λ denotes the only child node of succ then1701

t · succ · λ
1

is also a traversal.1702

• (Succ′) If t1 · succ · λ
1

· t2 · iλ is a traversal for i ∈ N then t1 · succ · λ
1

· t2 · iλ · (i+ 1)succ1703

is also a traversal.1704

• The rules for pred are defined similarly to (Succ) and (Succ′).1705

The conditional operator is implemented as follows. (We recall that a cond-node in1706

the computation tree has three children nodes numbered from 1 to 3 corresponding to the1707

three parameters of the conditional operator.)1708

• (Cond-If) If t1·cond is a traversal and λ denotes the first child of cond then t1 · cond · λ
1

1709

is also a traversal.1710

• (Cond-ThenElse) If t1 · cond · λ
1

· t2 · iλ is a traversal then so is t1 · cond · λ
1

· t2 · iλ · λ

2 + [i > 0]

.1711

• (Cond′) If t1 · cond · t2 · λ

k

· t3 · iλ is a traversal for k = 2 or k = 3 then the sequence1712

t1 · cond · t2 · λ

k

· t3 · iλ · icond is also a traversal.1713

It is easy to verify that these traversal rules are all well-behaved. This completes the1714

definition of traversals for PCF.1715

3.1.3. Revealed semantics1716

We recall that the definition of the syntactically-revealed semantics (Sec. 2.1, Def. 2.6)
accounts for the presence of interpreted constants: For every Σ-constant f : (A1, . . . , Ap, B)
in the language, the revealed strategy of a term of the form λξ.fN1 . . . Np is defined as:

〈〈λξ.fN1 . . . Np〉〉 = 〈〈〈N1〉〉, . . . , 〈〈Np〉〉〉 #
0..p−1 [[f ]]

where [[f ]] is the standard strategy denotation of f .1717
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3.1.4. Correspondence theorem1718

We now show how to extend the Correspondence Theorem of the simply-typed lambda1719

calculus (Theorem 2.2) to PCF.1720

Lemma 3.1. Let (S,⊆) denote the set of sets of justified sequences of nodes ordered by1721

subset inclusion. The function T rav( )�~ : (CT,v)→ (S,⊆) is continuous.1722

Proof. - Monotonicity : Let T and T ′ be two computation trees such that T v T ′ and let t1723

be some traversal of T . Traversals ending with a node labelled ⊥ are maximal therefore1724

⊥ can only occur at the last position in a traversal. We prove the following properties:1725

(i) If t = t · n with n 6= ⊥ then t is a traversal of T ′;1726

(ii) if t = t1 · ⊥ then t1 ∈ T rav(T
′).1727

(i) By induction on the length of t. It is trivial for the empty traversal. Suppose that1728

t = t1 · n is a traversal where n 6= ⊥ and t1 is a traversal of T ′. We observe that in all1729

traversal rules, the produced traversal is of the form t1 ·n where n is defined to be a child1730

node or value-leaf of some node m occurring in t1. Moreover, the choice of the node n1731

only depends on the traversal t1 (provided that the constant rules are well-behaved).1732

Since T v T ′, any node m occurring in t1 belongs to T ′ and the children nodes of m in1733

T also belong to the tree T ′. Hence n is also present in T ′ and the rule used to produce1734

the traversal t of T can be used to produce the traversal t of T ′.1735

(ii) ⊥ can only occur at the last position in a traversal therefore t1 does not end with ⊥1736

and by (i) we have t1 ∈ T rav(T
′).1737

Hence we have:

T rav(T )�~ = {t � r | t ∈ T rav(T )}

= {(t · n) � r | t · n ∈ T rav(T ) ∧ n 6= ⊥} ∪ {(t · ⊥) � r | t · ⊥ ∈ T rav(T )}

(by (i) and (ii)) ⊆ {(t · n) � r | t · n ∈ T rav(T ′) ∧ n 6= ⊥} ∪ {t � r | t ∈ T rav(T ′)}

= T rav(T ′)�~ .

- Continuity : Let t ∈ T rav
(⋃

n∈ω Tn
)
. We write ti for the finite prefix of t of length i.

The set of traversals is prefix-closed therefore ti ∈ T rav
(⋃

n∈ω Tn
)

for every i. Since ti
has finite length we have ti ∈ T rav(Tji) for some ji ∈ ω. Therefore we have:

t � r = (
∨

i∈ω

ti) � r (the sequence (ti)i∈ω converges to t)

=
⋃

i∈ω

(ti � r) since � r is continuous (Lemma 1.1)

∈
⋃

i∈ω

T rav(Tji)
�~ since ti ∈ T rav(Tji)

⊆
⋃

i∈ω

T rav(Ti)
�~ since {ji | i ∈ ω} ⊆ ω.
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Hence T rav(
⋃

n∈ω Tn)
�~ ⊆

⋃

n∈ω T rav(Tn)
�~.1738

Proposition 3.1. Let Γ `M : T be a PCF term and r be the root of τ(M). Then:

(i) ϕM(T rav(M)∗) = 〈〈M〉〉 ,

(ii) ϕM(T rav(M)�~) = [[M ]] .

Proof. We first show the result for PCF1: For (i), the proof is an induction identical to1739

the proof of Theorem 2.2; we just need to complete it with the new constants cases. The1740

cases succ, pred, cond and numeral constants are straightforward. Case M = Ωo: We1741

have T rav(Ωo) = Pref({λ · ⊥}) therefore T rav(Ωo)
�~ = Pref({λ}) and [[Ωo]] = Pref({q})1742

with ϕ(λ) = q. Hence [[Ωo]] = ϕ(T rav(Ωo)
�~). (ii) is a direct consequence of (i) and the1743

Projection Lemma 2.7.1744

We now extend the result to PCF. Let M be a PCF term, we have:

[[M ]] =
⋃

n∈ω

[[Mn]] [11, lemma 16]

=
⋃

n∈ω

T rav(τ(Mn))
�~ since Mn is a PCF1 term

= T rav(
⋃

n∈ω

τ(Mn))
�~ by continuity of T rav( )�~, Lemma 3.1

= T rav(τ(M))�~ by definition of τ(M)

= T rav(M)�~ .

Hence by Corollary 2.1, ϕ defines a bijection from T rav(M)�~ to [[M ]]:

ϕ : T rav(M)�~
∼=
−→ [[M ]] .

Example 3.2 (Successor operator). Consider the term M = succ 5 whose computation1745

tree is represented below. Vertices attached to their parent node with a dashed line repre-1746

sent the value-leaves.1747

λ0

succ

λ1

5

0 1 . . .

0 1 . . .

0 1 . . .

0 1 . . .

1748

The following sequence of nodes is a traversal of τ(M):

t = λ0 · succ · λ1 · 5 · 55 · 5λ1 · 6succ · 6λ0 .
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The subsequences t∗ and t � r are given by:

t∗ = λ0 · λ1 · 5λ1 · 6λ0 and t � r = λ0 · 6λ0 .

The sequence ϕ(t∗) = q0 · q5 · 5q5 · 5q0 where q0 and q5 both denote the root of the flat1749

arena over N, corresponds to a play of the syntactically-revealed semantics. The sequence1750

ϕ(t � r) = q0 · 5q0 corresponds to a play of the standard semantics. The interaction play1751

ϕ(t∗) is represented below:1752

1
5
−→ N

succ
−→ N

q0
q5

5q5

6q0
1753

Example 3.3 (Conditional).1754

λxy

cond

λ1

1

λ2

x

λ3

y

Figure 5: Computa-
tion tree of the term
λxy.cond 1 x y.

Take the computation tree represented on the left (value-leaves are
not shown). For every value v ∈ D we have the following traversal:

t = λxy · cond · λ1 · 1 · 11 · λ
3 · y · vy · vλ3 · vcond · vλxy .

The subsequence t∗ is given by:

t∗ = λxy · λ1 · λ3 · y · vy · vλ3 · vλxy

and the core of t � ~ is given by:

t � ~ = λxy · y · vy · vλxy .

By the correspondence theorem, the sequence of moves ϕ(t∗) (represented in the diagram
below) is a play of the revealed semantics, and the sequence ϕ(t � ~) is the play of the
standard semantics obtained by hiding the internal moves from ϕ(t∗).
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N × N
〈[[1]],π1,π2〉
−→ N × N × N

cond
−→ N

q
(λxy)
0

q
(λ1)
a

1

q
(λ2)
b

q
(y)
y

vqy
vqb

vq0
1755

Remark 3.1 (Finite representation of the computation tree) Due to the presence of the1756

Y combinator, computation trees of PCF terms are potentially infinite. It is possible to1757

give an equivalent finite representation using computation graphs. We briefly describe here1758

how this can be achieved.1759

The idea is to replace Y-recursion by µ-recursion: each subterm of the form YA M is1760

replaced by µf.Mf for f fresh. The computation graph is then obtained from the eta-long1761

normal form of the term. The abstraction nodes are generalized to take into account µ1762

binders: an abstraction node is of the form λλx where x is a list of µ-bound and λ-bound1763

variables where the µ-bound variables are written in parenthesis to distinguish them from1764

λ-bound variables.1765

The computation graph of YA(λfA.M) for A = (A1, . . . , An, o) is then obtained from1766

the syntax representation of λλ(f)x1 . . . xn.dMe by adding a child edge going from each1767

occurrence of the recursion variable f in dMe to the root λλ(f)x1 . . . xn.1768

This presentation also accounts for ground type recursion, for instance the computation1769

graph of the while operator of Idealized Algol defined as while C do I ≡ Y (λf.cond C skip (seq If))1770

is given by the graph of λλ(f).cond C skip (seq If).1771

The order of a generalized abstraction node is still defined as the order of the term1772

represented by the subtree rooted at this node. In other word, the order of λλx is defined1773

as the order of λλy where y is the sublist of x obtained by removing all the recursion1774

variables (those in parenthesis).1775

Bound variables in a generalized abstraction node λλx are numbered as follows: The ith1776

λ-bound variable in x is denoted by i and the ith recursion variable is denoted by (i). The1777

links in a justified sequence of nodes are labelled accordingly.1778

All the traversal rules are kept unmodified. The recursion variables in the λ-nodes are1779

ignored by the rules since such variables are numbered differently from standard variables.1780

In particular, the (Var) rule only applies to non-recursion variables. We only need to add1781

a rule to handle recursion variable: whenever a traversal meets a recursion variable f in1782

the subgraph τ(F ), the traversal jumps to the root of the graph:1783
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(Varrec) If t′ · n · λλx . . . fi

(i)

is a traversal for some recursion variable fi

bound by λλx then so is t′ · n · λλx . . . fi

(i)

· λλx.
1784

The enabling relation ` needs to be adapted to allow the root to be justified by a recursion1785

variable (as if it was a child of the recursion variable). Since a traversal can now visit the1786

root multiple times, the definition of the traversal core also needs to be adapted: instead1787

of keeping all the nodes hereditarily enabled by the root, it keeps the nodes that are1788

hereditarily justified by an occurrence of the root with no justifier. The definition of the1789

mapping ψ from nodes to moves remains consistent with this notion of computation tree,1790

and the game-semantic correspondence follows.1791

3.2. Idealized algol1792

We now consider the language Idealized Algol. The general idea is the same as for1793

PCF, however there are some difficulties caused by the presence of the two base types var1794

and com. We briefly sketch how our framework can be adapted to IA without going into1795

the details of the proof of the Correspondence theorem.1796

Computation hypertree1797

The languages that we have considered up to now (lambda calculus and PCF) do not1798

have product types. Consequently, the arenas involved in their game model only have a1799

single initial move at most, and can therefore be regarded as trees. This property permitted1800

us to represent the game denotation of term directly on some representation of its abstract1801

syntax tree—the computation tree. This cannot be done in IA because the base type var1802

is given by the product comω × exp which corresponding game has infinitely many initial1803

moves, whereas the AST of the term is a tree and therefore has a single root.1804

The overcome this mismatch, we use hypertrees instead of trees. These hypertrees1805

provide an abstract representation of the syntax of the term in which some nodes, called1806

generalized lambda nodes, are themselves constituted of (possibly infinitely many) subn-1807

odes. Furthermore each individual subnode can have its own children nodes.1808

Notations 3.1 For every type µ, we write Dµ to denote the set of values of type µ. We1809

have Dexp = N, Dcom = {done} and Dvar = Dexp∪Dcom. For every node n, if κ(n) is of type1810

(A1, . . . An, B), we call B the return type of n. The set of value-leaves of a node n is given1811

by Dµ where µ is the return type of n. For conciseness, when representing value-leaves in1812

the hypertree, we merge all the value-leaves of a given node of type µ into a single leaf1813

labelled Dµ. For instance we use the tree notation1814

n

Dexp

to mean n

0 1 2 . . .

and n

Dcom

for n

done

.1815

The computation hypertree of a term with return type var has infinitely many root1816

lambda-nodes which are merged all-together into a single node called a generalized1817

lambda-node. The subnodes of a generalized lambda nodes are labelled λr, λw0, λw1,1818
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λw2, . . . Suppose that M is a term of type var, then the computation hypertree for λξ.M1819

is obtained by relabelling the root λ-nodes λr, λw0, λw1, λw2 , . . . into λrξ, λw0ξ, λw1ξ, λw2ξ,1820

. . . . For a term M of type exp or com, the computation hypertree for λξ.M is computed1821

the same way as for computation trees of lambda-terms.1822

Table 4 defines the computation hypertree for each term-construct of IA. A generalized1823

lambda node is represented by a frame surrounding its subnodes (2nd and 6th row in the1824

table).1825

Enabling relation, justified sequence1826

The notion of binder is redefined as follows: Given a variable node x, the binder of x1827

is the first node occurring in the path to the root that is a lambda node λx with x ∈ x or1828

a block-declaration node new x.1829

The enabling relation and the definition of justified sequence is modified so that occur-1830

rences of block-allocated variables are justified by nodes of type new x instead of lambda1831

nodes.1832

Children numbering convention1833

Let p be a node and suppose that its ith child n has return type var. Then n is a1834

generalized lambda-node with subnodes λrξ, λw0ξ, . . . . From the point of view of the1835

parent node p, these subnodes are referenced as “i.α” where 0 ≤ i ≤ arity(p) and α ∈1836

{r}∪{wk | k ∈ N}. For instance i.r refers to the root labelled λrξ of the ith child of p, and1837

i.wk refers to the root labelled λwkξ.1838

Traversals1839

The following new rules are added on top of those defined in Sec. 1.3:1840

• Application rules1841

The rule (app) is now split up in three rules (appexp), (appcom) and (appvar) correspond-
ing to traversals ending with an @-node of return type exp, com and var respectively.
The rules (appexp), (appcom) are defined identically to (app) (see Sec. 1.3). The rule
(appvar) is

(appvar) t · λ
kξ ·@

0

∈ T rav and k ∈ {r, w0, w1, . . .} =⇒ t · λkξ ·@
0

· λkη
0.k

∈ T rav .

• Input-variable rules1842

We define the rules (InputVal$) for $ ranging in {com, var, exp}. For com and exp, the
rules are defined identically to (InputVal) of Sec. 1.3. The var case is implemented
by two rules:

(InputValuevarr )
t1 · λ

rξ · x · t2 ∈ T rav

t1 · x · t2 · vx
v

∈ T rav
x pending node ∧ x ∈ N~`

var ∧ x : var, v ∈ D .
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M τ(M)

x : µ
µ ∈ {com, exp} λ

x

Dµ

Dµ

new x in N : µ
µ ∈ {com, exp}

new x

τ(N : µ) Dµ

x : var λr λw0 λw1 λw2 λw...

Dexp x done

Dexp done

skip: com λ

skip

done

done

deref L : exp λ

deref

τ(L : var) done

done

assign L N : com λ

assign

τ(N : exp) τ(L : var) done

done

seqµ N1 N2 :
com

µ ∈ {exp, com}

λ

seqµ

τ(N1 : com) τ(N2 : µ) done

Dµ

mkvar Nw Nr : var λr λw0 λw1 λw2 λw...

Dexp mkvar done

τ(Nr) τ(Nw) Dexp done

Table 4: Computation hypertrees of IA constructs.
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(InputValuevarw )
t1 · λ

wξ · x · t2 ∈ T rav

t1 · x · t2 · donex

v

∈ T rav

x pending node ∧ x ∈ N~`
var ∧ x : var .

• IA constants rules1843

The rules for the constants of IA are given in Table 5. These rules for new are purely1844

structural, they are defined similarly to (appexp), (appcom) and (appdone).1845

The rules from Table 5 do not suffice to model mkvar however. We need to specify1846

what happens when reaching a variable node that is hereditarily justified by the1847

constant mkvar. Take for instance the term assign (mkvar (λx.M)N)7. The rule1848

(mkvar′′w) permits one to pass the node mkvar and to continue with the traversal of1849

the computation tree of λx.M , which may subsequently lead to some occurrence of x.1850

The behaviour of the traversal at this point is specified by the traversal rules defined1851

in the next paragraph.1852

• Variable rules1853

Let x be an internal variable node. Then by definition it is either hereditarily justified1854

by an @-node or by a Σ-constant node.1855

– Suppose that x’s binder is a lambda-node λx and x ∈ N@`.1856

This case is a generalization of the rule (Var) (Sec. 1.3). The only difference is
that for variables of type var, the lambda nodes preceding x in the traversal
determines the lambda-node that is visited next:

(Varvar)
t · n · λx . . . λαxi · xi

i

∈ T rav

t · n · λx . . . λαxi · xi

i

· ληi

i.α

∈ T rav

xi ∈ N
@`
var ∧ α ∈ {r}∪{wi | i ∈ N} .

– Suppose that x’s binder is a lambda-node and x ∈ NNΣ`. Then x’s binder is
necessarily the second child of a mkvar-node (since mkvar is the only constant
of order greater than 0).

(mkvar-Var)
t · λwkξ · mkvar · λx · t2 · x ∈ T rav

t · λwkξ · mkvar · λx · t2 · x · kx ∈ T rav
.

– Suppose that x is a block-allocated variable.1857

Given a block-declaration new x, we call assignment of x any segment of traversal
of the form λwkξ · x for some k ∈ Dexp and occurrence x of a node bound by
new x. We call k the value assigned to x.

(new-Varw)
t · λwkξ · x ∈ T rav

t · λwkξ · x · donex ∈ T rav
x ∈ Nnew`

var .
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(deref)
t · deref ∈ T rav

t · deref · n
1.r

∈ T rav
(deref ′)

t · deref · n · t2 · vn ∈ T rav

t · deref · n · t2 · vn · vderef ∈ T rav

(assign)
t · assign ∈ T rav

t · assign · λ
1

∈ T rav
(assign′)

t · assign · λ · t2 · vλ ∈ T rav

t · assign · λ · t2 · vλ · λη

2.wn

∈ T rav

(assign′′)
t · assign · t2 · λη

2.wk

· t3 · doneλη ∈ T rav

t · assign · t2 · λη · t3 · doneλη · doneassign ∈ T rav

(seq)
t · seq ∈ T rav

t · seq · n
1

∈ T rav
(seq′)

t · seq · n · t2 · vn ∈ T rav

t · seq · n · t2 · vn ·m

2

∈ T rav

(seq′′)
t · seq · t2 ·m

2

· t3 · vm ∈ T rav

t · seq · t2 ·m · t3 · vm · vseq ∈ T rav

(mkvarr)
t · λrξ · mkvar ∈ T rav

t · λrξ · mkvar · λ
1

∈ T rav
(mkvar′r)

t · mkvar · λ · t2 · vλ ∈ T rav

t · mkvar · λ · t2 · vλ · vmkvar ∈ T rav

(mkvarw)
t · λwkξ · mkvar ∈ T rav

t · λwkξ · mkvar · λη
2

∈ T rav

(mkvar′′w)
t · λwkξ · mkvar · λη · t2 · doneλη ∈ T rav

t · λwkξ · mkvar · λη · t2 · doneλη · donemkvar ∈ T rav

where v denotes some value from D.

Table 5: Traversal rules for IA constants.
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(new-Varr)
t1 · new x · t2 · λ

rξ · x ∈ T rav

t1 · new x · t2 · λ
rξ · x · kx ∈ T rav

where k ∈ N is the last value
assigned to x in t2, or 0 if there
is no such assignment.

3.2.1. Game semantics correspondence1858

The properties that we proved for computation trees and traversals of the lambda1859

calculus with constants can easily be lifted to computation hypertrees of IA. In particular:1860

• Constant traversal rules are well-behaved (for order-0 and order-1 constants, this is1861

a consequence of Lemma 1.3; for mkvar and new this can be easily verified);1862

• P-view of traversals are paths in the computation hypertrees;1863

• For beta-normal terms, the P-view of a traversal core is the core of the P-view1864

(Lemma 1.20, and the O-view of a traversal is the O-view of its core (Lemma 1.18);1865

• There is a mapping from vertices of the computation hypertrees to moves in the1866

interaction game semantics;1867

• There is a correspondence between traversals of the computation tree and plays in1868

interaction game semantics;1869

• Consequently, there is a correspondence between the standard game semantics and1870

the set of justified sequences of nodes T rav(M)�~.1871

4. Conclusion and related works1872

We have given a new presentation of game semantics based on the theory of traversals.1873

This presentation is concrete in the sense that the traversal denotation carries syntactic1874

information about the term. We established the connection with the Hyland-Ong game1875

semantics by means of a Correspondence Theorem: The set of traversals of a term is1876

isomorphic to the revealed game denotation of the term.1877

One advantage of the traversal theory lies in its ability to compute beta-reduction lo-1878

cally without having to perform term substitution. As observed by Danos et al. [14], “the1879

interaction processes at work in game semantics are implementations of linear head reduc-1880

tion”. In that regards, the traversals theory can be viewed as a rule-based implementation1881

of the head linear reduction strategy [15]. Although the idea of evaluating a term using1882

this strategy is not new, our presentation has several advantages and novelties. Firstly, the1883

Correspondence theorem establishes a clear correspondence with game semantics, namely1884

that traversals gives you a way to compute precisely the revealed game denotation of a1885

term. To our knowledge, although the notion of revealed game semantics was mentioned1886

in previous works [9], it was never formally defined. Secondly, our presentation highlights1887

more clearly the algorithmic aspect of game semantics. The rule-based definition of traver-1888

sals lends itself well to automaton characterization. An example is the characterization of1889

higher-order recursion schemes by collapsible higher-order pushdown automata [16].1890
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Another advantage of the traversal theory is its efficiency for effectively computing the1891

game-semantic denotation of a term. The traditional approach is to proceed bottom-up1892

by appealing to compositionality. Although the compositional nature of game semantics1893

is very attractive from a theoretical point of view, in practice it is not efficient to compute1894

a denotation in that way. Indeed, for every subterm one has to compute all the possible1895

ways to interact with the environment for that subterm. But this denotation is then1896

immediately composed with another subterm, which determines part of the environment’s1897

behaviour, thus it was wasteful in the first place to consider all the possible behaviours of1898

the environment for the first term.1899

The traversal theory follows a top-down approach which means that we only consider1900

possible behaviour of the outermost environment. Moreover contrary to the compositional1901

method, there is no need to implement any composition mechanism: the set of traversals1902

is just obtained by following the traversal rules; the hiding of internal nodes is postponed1903

until the end.1904

The lazy nature of the traversal evaluation provides a further source of efficiency: the1905

beta-redexes are computed “on-demand” instead of performing a global substitution.1906

Last but not least, we believe that the syntactic correspondence between game semantics1907

and its syntax is of pedagogical interest. Game semantics is often found hard to understand1908

due to some obscure technical definitions. A concrete presentation such as the one given1909

by the traversal theory, allows one to explain game-semantic concepts (such as P-view,1910

innocence, visibility) from a programmer point of view. I have implemented a prototype1911

tool using the F# programming language, which among other things, illustrates the theory1912

of traversals [17]. The tool lets the user “play” the game induced by a simply-typed term1913

(or a higher-order grammar) just by choosing nodes from the computation tree. As the1914

game unfolds the corresponding traversal is shown. A calculator mode allows the user to1915

perform various operations on justified sequences. (All the examples from this chapter1916

were generated using this tool.)1917

Further correspondences1918

The traversal theory that we have presented here captures the lambda calculus fragment1919

of the game model of call-by-name programming languages such as PCF and Idealized1920

Algol. A natural way to extend this work would be to define the appropriate notion of1921

traversal corresponding to the call-by-value games [18, 19].1922

Applications1923

The theory of traversal has applications in several domains of research:1924

Verification1925

The theory of traversal was originally introduced by Ong to study the decidability of1926

MSO theories of infinite trees generated by higher-order recursion schemes. This result1927

was recently used by Kobayashi to develop a novel framework for verification of temporal1928

properties of higher-order functional programs [20].1929
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Another promising application of the traversal theory concerns the study of reachability1930

problems. In its most general form, the reachability problem for programming languages1931

can informally be stated as: Given a term M and coloured subterm N , is there a context1932

C[−] such that evaluating C[M ] involves the evaluation of N?. In an ongoing research1933

project, Luke Ong and Nikos Tzevelekos make use of the traversal theory to study several1934

variations of the reachability problem for finitary PCF [21].1935

Automata theory1936

The traversal theory has led to an equi-expressivity result between a certain type of1937

automaton device called collapsible pushdown automaton (CPDA) and higher-order recur-1938

sion schemes (HORS) [16]. One direction of this proof relies on the traversal theory: for1939

a given HORS, a CPDA is constructed that computes precisely the set of traversals over1940

the computation tree of the HORS.1941

A crucial point in this encoding is that structures generated by recursion schemes are1942

of ground type. Because such structures do not interact with the environment, their game-1943

semantic denotation is relatively simple. In particular, the O-view of the traversal does not1944

play any role in the traversal rules and therefore the automaton does not need to calculate1945

or remember it. A natural extension would be a similar automata-characterization for1946

higher-order structures such as simply-typed terms.1947

Pattern matching1948

Higher-order matching is the following problem: Given an equation M = N where M1949

is an open simply-typed term and N is a closed simply-typed term, is there a solution1950

substitution θ such that Mθ and N have the same βη-normal form? Huet conjectured in1951

1976 that this problem is decidable [22]. It was proved only recently by Colin Stirling that1952

it is indeed the case [23].1953

Stirling’s argument is based on a game-theoretic argument, namely the concept of tree-1954

checking games. As pointed out by Luke Ong, Stirling’s games are closely related to the1955

innocent game semantics framework provided by the theory of traversals. The concept of1956

traversals is implicitly present in Stirling’s proof (though the notion of justification pointers1957

is replaced by “iteratively defined look-up tables”).1958

Analyzing syntactic constraints1959

The connection between syntax and semantics provided by the traversal theory enables1960

us to analyze the effect of a given syntactic constraint on the game model. The next1961

chapter is an example of such an application: By making simple observations about the1962

computation tree of safe terms, the Correspondence Theorem allows us to show that their1963

strategy denotations are of a particular kind: Their plays satisfy a certain property called1964

incremental justification.1965
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