The Safe λ-Calculus

William Blum

Joint work with C.-H. Luke Ong
Oxford University Computing Laboratory
BCTCS, 2-5 April 2007

Overview

- Safety: a restriction for higher-order grammars.
- Transposed to the λ-calculus, it gives rise to the Safe λ-calculus.
- Safety has nice algorithmic properties, automata-theoretic and game-semantic characterisations.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

> Theorem (Knapik, Niwiński and Urzyczyn $(2001,2002))$
> 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
> 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

- Aehlig, de Miranda, Ong (2004) introduced the Safe λ-calculus.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn $(2001,2002)$)

1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn $(2001,2002)$)

1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

- Aehlig, de Miranda, Ong (2004) introduced the Safe λ-calculus.

Simply Typed λ-Calculus

- Simple types $A:=0 \mid A \rightarrow A$.
- The order of a type is given by order $(0)=0$, $\operatorname{order}(A \rightarrow B)=\max (\operatorname{order}(A)+1, \operatorname{order}(B))$.
- Jugdements of the form $\Gamma \vdash M: T$ where Γ is the context, M is the term and T is the type:

- Example: $f: o \rightarrow 0 \rightarrow o, x: o \vdash\left(\lambda \varphi^{0 \rightarrow 0} x^{0} . \varphi x\right)(f x)$
- A single rule: β-reduction. e.g. $(\lambda x . M) N \rightarrow_{\beta} M[N / x]$

Simply Typed λ-Calculus

- Simple types $A:=0 \mid A \rightarrow A$.
- The order of a type is given by $\operatorname{order}(o)=0$, $\operatorname{order}(A \rightarrow B)=\max (\operatorname{order}(A)+1, \operatorname{order}(B))$.
- Jugdements of the form $\Gamma \vdash M: T$ where Γ is the context, M is the term and T is the type:

Simply Typed λ-Calculus

- Simple types $A:=0 \mid A \rightarrow A$.
- The order of a type is given by order $(o)=0$, $\operatorname{order}(A \rightarrow B)=\max (\operatorname{order}(A)+1, \operatorname{order}(B))$.
- Jugdements of the form $\Gamma \vdash M: T$ where Γ is the context, M is the term and T is the type:

$$
\begin{aligned}
& (\text { var }) \frac{\Gamma: A \vdash x: A}{x} \quad(w k) \frac{\Gamma \vdash M: A}{\Delta \vdash M: A} \Gamma \subset \Delta \\
& (a p p) \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \quad(a b s) \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x^{A} \cdot M: A \rightarrow B}
\end{aligned}
$$

Simply Typed λ-Calculus

- Simple types $A:=0 \mid A \rightarrow A$.
- The order of a type is given by order $(o)=0$, $\operatorname{order}(A \rightarrow B)=\max (\operatorname{order}(A)+1, \operatorname{order}(B))$.
- Jugdements of the form $\Gamma \vdash M: T$ where Γ is the context, M is the term and T is the type:

$$
\begin{gathered}
\left(\text { var } \frac{}{x: A \vdash x: A} \quad(\text { wk }) \frac{\Gamma \vdash M: A}{\Delta \vdash M: A} \Gamma \subset \Delta\right. \\
(a p p) \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \quad(a b s) \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x^{A} \cdot M: A \rightarrow B}
\end{gathered}
$$

- Example: $f: o \rightarrow 0 \rightarrow 0, x: o \vdash\left(\lambda \varphi^{0 \rightarrow 0} x^{0} . \varphi x\right)(f x)$

Simply Typed λ-Calculus

- Simple types $A:=0 \mid A \rightarrow A$.
- The order of a type is given by order $(o)=0$, $\operatorname{order}(A \rightarrow B)=\max (\operatorname{order}(A)+1, \operatorname{order}(B))$.
- Jugdements of the form $\Gamma \vdash M: T$ where Γ is the context, M is the term and T is the type:

$$
\begin{gathered}
\left(\text { var } \frac{}{x: A \vdash x: A} \quad(w k) \frac{\Gamma \vdash M: A}{\Delta \vdash M: A} \Gamma \subset \Delta\right. \\
(a p p) \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \quad(a b s) \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x^{A} \cdot M: A \rightarrow B}
\end{gathered}
$$

- Example: $f: o \rightarrow o \rightarrow o, x: o \vdash\left(\lambda \varphi^{o \rightarrow o} x^{0} . \varphi x\right)(f x)$
- A single rule: β-reduction. e.g. $(\lambda x . M) N \rightarrow_{\beta} M[N / x]$

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y \cdot y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y . x)) y$ becomes $(\lambda x .(\lambda z . x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.
Safety avoids the need for variable renaming!

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y . y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y . x)) y$ becomes $(\lambda x .(\lambda z . x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y \cdot y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y . x)) y$ becomes $(\lambda x .(\lambda z . x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y \cdot y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y . x)) y$ becomes $(\lambda x .(\lambda z . x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
requires an unbounded supply of indices.

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y \cdot y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y . x)) y$ becomes $(\lambda x .(\lambda z . x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

Variable Capture

The usual "problem" in λ-calculus: avoid variable capture when performing substitution: $(\lambda x .(\lambda y \cdot x)) y \rightarrow_{\beta}(\lambda \underline{y} \cdot x)[\underline{y} / x] \neq \lambda y . y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x .(\lambda y \cdot x)) y$ becomes $(\lambda x .(\lambda z \cdot x)) y$ which reduces to $(\lambda z . x)[y / x]=\lambda z . y$
Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β-reductions.
2. Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.
Safety avoids the need for variable renaming!

The Safe λ-Calculus

The formation rules

$$
\begin{gathered}
\left(\text { var } \frac{\overline{x: A} \vdash_{s} x: A}{} \quad(\text { wk }) \frac{\Gamma \vdash_{s} M: A}{\Delta \vdash_{s} M: A} \Gamma \subset \Delta\right. \\
(a p p) \frac{\Gamma \vdash M:\left(A, \ldots, A_{l}, B\right) \quad \Gamma \vdash_{s} N_{1}: A_{1} \quad \ldots \quad \Gamma \vdash_{s} N_{l}: A_{l}}{\Gamma \vdash_{s} M N_{1} \ldots N_{l}: B}
\end{gathered}
$$

$$
\text { with the side-condition } \forall y \in \Gamma: \operatorname{ord}(y) \geq \operatorname{ord}(B)
$$

$$
(a b s) \frac{\Gamma, x_{1}: A_{1} \ldots x_{n}: A_{n} \vdash_{s} M: B}{\Gamma \vdash_{s} \lambda x_{1}: A_{1} \ldots x_{n}: A_{n} \cdot M: A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B}
$$

with the side-condition $\forall y \in \Gamma: \operatorname{ord}(y) \geq \operatorname{ord}\left(A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B\right)$

In the Safe λ-calculus there is no need to rename variables when performing substitution.

The Safe λ-Calculus

The formation rules

$$
\left.\begin{array}{c}
(\operatorname{var}) \frac{\Gamma(w)}{x: A \vdash_{s} x: A} \quad(\text { 壮 } M: A \\
\Delta \vdash_{s} M: A \\
\square
\end{array}\right]
$$

$$
\text { with the side-condition } \forall y \in \Gamma: \operatorname{ord}(y) \geq \operatorname{ord}(B)
$$

$$
(a b s) \frac{\Gamma, x_{1}: A_{1} \ldots x_{n}: A_{n} \vdash_{s} M: B}{\Gamma \vdash_{s} \lambda x_{1}: A_{1} \ldots x_{n}: A_{n} \cdot M: A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B}
$$

with the side-condition $\forall y \in \Gamma: \operatorname{ord}(y) \geq \operatorname{ord}\left(A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B\right)$

Property
In the Safe λ-calculus there is no need to rename variables when performing substitution.

Examples

- Contracting the β-redex in the following term

$$
f: o \rightarrow 0 \rightarrow o, x: o \vdash\left(\lambda \varphi^{0 \rightarrow o} x^{0} \cdot \varphi x\right)(f x)
$$

leads to variable capture:

$$
(\lambda \varphi x \cdot \varphi x)(f x) \not \not_{\beta}(\lambda x .(f x) x) .
$$

Hence the term is unsafe.
Indeed, $\operatorname{ord}(x)=0 \leq 1=\operatorname{ord}(f x)$.
\Rightarrow The term $\left(\lambda \varphi^{0 \rightarrow 0} x^{0} . \varphi x\right)\left(\lambda y^{0} . y\right)$ is safe.

Examples

- Contracting the β-redex in the following term

$$
f: o \rightarrow o \rightarrow o, x: o \vdash\left(\lambda \varphi^{o \rightarrow o} x^{o} . \varphi x\right)(\underline{f x})
$$

leads to variable capture:

$$
(\lambda \varphi x \cdot \varphi x)(f x) \not \not_{\beta}(\lambda x .(f x) x)
$$

Hence the term is unsafe. Indeed, $\operatorname{ord}(x)=0 \leq 1=\operatorname{ord}(f x)$.

Examples

- Contracting the β-redex in the following term

$$
f: o \rightarrow 0 \rightarrow 0, x: o \vdash\left(\lambda \varphi^{0 \rightarrow 0} x^{0} \cdot \varphi x\right)(\underline{f x})
$$

leads to variable capture:

$$
(\lambda \varphi x \cdot \varphi x)(f x) \not \not_{\beta}(\lambda x .(f x) x)
$$

Hence the term is unsafe.
Indeed, $\operatorname{ord}(x)=0 \leq 1=\operatorname{ord}(f x)$.

- The term $\left(\lambda \varphi^{0 \rightarrow o} x^{0} . \varphi x\right)\left(\lambda y^{0} \cdot y\right)$ is safe.

Numerical functions

Church Encoding: for $n \in \mathbb{N}, \bar{n}=\lambda s z . s^{n} z$ of type $I=(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$.

Theorem (Schwichtenberg 1976)
The numeric function representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow$ I are exactly the multivariate polynomials extended with the conditional function:

$$
\operatorname{cond}(t, x, y)= \begin{cases}x, & \text { if } t=0 \\ y, & \text { if } t=n+1\end{cases}
$$

cond can be represented by the unsafe term $\lambda F G H \alpha x . H(\lambda y . G \alpha x)(F \alpha x)$.
In fact cond is not representable in the Safe λ-calculus:
Theorem
Functions representable by safe λ-expressions of type $/$
are exactly the multivariate polynomials.

Numerical functions

Church Encoding: for $n \in \mathbb{N}, \bar{n}=\lambda s z . s^{n} z$ of type $I=(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$.

Theorem (Schwichtenberg 1976)

The numeric function representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$
\operatorname{cond}(t, x, y)= \begin{cases}x, & \text { if } t=0 \\ y, & \text { if } t=n+1\end{cases}
$$

cond can be represented by the unsafe term
$\lambda F G H \alpha x . H(\lambda y . G \alpha x)(F \alpha x)$.
In fact cond is not representable in the Safe λ-calculus:
Theorem
Functions representable by safe λ-expressions of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials.

Game Semantics

Let M : T be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy $\llbracket M \rrbracket$ on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Traversals $\mathcal{T} \operatorname{rav}(M)=$ sequences of nodes with links respecting some formation rules.Correspondence Theorem The game semantics of a term can be represented on the computation tree:

Reduction $(\mathcal{T} \operatorname{rav}(M)) \cong \llbracket M \rrbracket$
Where $\langle\langle M\rangle\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game Semantics

Let M : T be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy $\llbracket M \rrbracket$ on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree $=$ canonical tree representation of a term.
- Traversals $\mathcal{T} \operatorname{rav}(M)=$ sequences of nodes with links respecting some formation rules.

The Correspondence Theorem
The game semantics of a term can be represented on the computation tree:

Game Semantics

Let $M: T$ be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy $\llbracket M \rrbracket$ on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree $=$ canonical tree representation of a term.
- Traversals $\mathcal{T} \operatorname{rav}(M)=$ sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

$$
\begin{gathered}
\mathcal{T} \operatorname{rav}(M) \cong\langle\langle M\rangle\rangle \\
\operatorname{Reduction}(\mathcal{T} \operatorname{rav}(M)) \cong \llbracket M \rrbracket
\end{gathered}
$$

where $\langle\langle M\rangle\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game-semantic Characterisation of Safety

- Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order $>\operatorname{ord}(x)$.
- Using the Correspondence Theorem we can show:

Proposition

> Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order $>\operatorname{ord}(m)$.

Corollary
Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Game-semantic Characterisation of Safety

- Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order $>\operatorname{ord}(x)$.
- Using the Correspondence Theorem we can show:

Proposition
Safe terms are denoted by P-incrementally justified strategies: each P -move m points to the last O -move in the P -view with order
$>\operatorname{ord}(m)$.

Corollary
Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Game-semantic Characterisation of Safety

- Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order $>\operatorname{ord}(x)$.
- Using the Correspondence Theorem we can show:

Proposition
Safe terms are denoted by P-incrementally justified strategies: each P -move m points to the last O -move in the P -view with order $>\operatorname{ord}(m)$.

Corollary
Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Conclusion and Future Works

Conclusion:
Safety is a syntactic constraint with nice algorithmic and game-semantic properties.
Future works:

- A categorical model of Safe PCF.
- Complexity classes characterised with the Safe λ-calculus?
- Safe Idealized Algol: is contextual equivalence decidable?

Related works:

- Jolie G. de Miranda's thesis on unsafe grammars.
- Ong introduced computation trees in LICS2006 to prove decidability of MSO theory on infinite trees generated by higher-order grammars (whether safe or not).

