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Overview

I Safety: a restriction for higher-order grammars.

I Transposed to the λ-calculus, it gives rise to the Safe λ-calculus.

I Safety has nice algorithmic properties, automata-theoretic and
game-semantic characterisations.



What is the Safety Restriction?

I First appeared under the name “restriction of derived types” in
“IO and OI Hierarchies” by W. Damm, TCS 1982

I It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

1. The Monadic Second Order (MSO) model checking problem for trees
generated by safe higher-order grammars of any order is decidable.

2. Automata-theoretic characterisation: Safe grammars of order n are as
expressive as pushdown automata of order n.

I Aehlig, de Miranda, Ong (2004) introduced the Safe λ-calculus.
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Simply Typed λ-Calculus

I Simple types A := o | A → A.

I The order of a type is given by order(o) = 0,
order(A → B) = max(order(A) + 1, order(B)).

I Jugdements of the form Γ ` M : T where Γ is the context, M is
the term and T is the type:

(var)
x : A ` x : A

(wk)
Γ ` M : A

∆ ` M : A
Γ ⊂ ∆

(app)
Γ ` M : A → B Γ ` N : A

Γ ` MN : B
(abs)

Γ, x : A ` M : B

Γ ` λxA.M : A → B

I Example: f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

I A single rule: β-reduction. e.g. (λx .M)N →β M[N/x ]
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Variable Capture

The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: switch to the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Safety avoids the need for variable renaming!
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The Safe λ-Calculus

The formation rules

(var)
x : A `s x : A

(wk)
Γ `s M : A

∆ `s M : A
Γ ⊂ ∆

(app)
Γ ` M : (A, . . . ,Al ,B) Γ `s N1 : A1 . . . Γ `s Nl : Al

Γ `s MN1 . . .Nl : B

with the side-condition ∀y ∈ Γ : ord(y) ≥ ord(B)

(abs)
Γ, x1 : A1 . . . xn : An `s M : B

Γ `s λx1 : A1 . . . xn : An.M : A1 → . . . → An → B

with the side-condition ∀y ∈ Γ : ord(y) ≥ ord(A1 → . . . → An → B)

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.
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Examples

I Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe.
Indeed, ord(x) = 0 ≤ 1 = ord(f x).

I The term (λϕo→oxo .ϕ x)(λyo .y) is safe.
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Numerical functions
Church Encoding: for n ∈ N, n = λsz .snz of type
I = (o → o) → o → o.

Theorem (Schwichtenberg 1976)

The numeric function representable by simply-typed terms of type
I → . . . → I are exactly the multivariate polynomials extended with
the conditional function:

cond(t, x , y) =

{
x , if t = 0
y , if t = n + 1 .

cond can be represented by the unsafe term
λFGHαx .H(λy .Gαx)(Fαx).
In fact cond is not representable in the Safe λ-calculus:

Theorem

Functions representable by safe λ-expressions of type I → . . . → I
are exactly the multivariate polynomials.
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Game Semantics
Let M : T be a pure simply typed term.

I Game-semantics provides a model of λ-calculus. M is denoted
by a strategy [[M]] on a game induced by T .

I A strategy is represented by a set of sequences of moves
together with links: each move points to a preceding move.

I Computation tree = canonical tree representation of a term.
I Traversals T rav(M) = sequences of nodes with links

respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the
computation tree:

T rav(M) ∼= 〈〈M〉〉

Reduction(T rav(M)) ∼= [[M]]

where 〈〈M〉〉 is the revealed game-semantic denotion (i.e. internal
moves are uncovered).
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Game-semantic Characterisation of Safety

I Computation tree of safe terms are incrementally-bound : each
variable x is bound by the first λ-node occurring in the path to
the root with order > ord(x).

I Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each
P-move m points to the last O-move in the P-view with order
> ord(m).

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.
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Conclusion and Future Works

Conclusion:
Safety is a syntactic constraint with nice algorithmic and
game-semantic properties.
Future works:

I A categorical model of Safe PCF.

I Complexity classes characterised with the Safe λ-calculus?

I Safe Idealized Algol: is contextual equivalence decidable?

Related works:

I Jolie G. de Miranda’s thesis on unsafe grammars.

I Ong introduced computation trees in LICS2006 to prove
decidability of MSO theory on infinite trees generated by
higher-order grammars (whether safe or not).
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