The Safe λ -Calculus

William Blum

Joint work with C.-H. Luke Ong

Oxford University Computing Laboratory

BCTCS, 2-5 April 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

- ► Safety: a restriction for higher-order grammars.
- Transposed to the λ -calculus, it gives rise to the Safe λ -calculus.
- Safety has nice algorithmic properties, automata-theoretic and game-semantic characterisations.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

Aehlig, de Miranda, Ong (2004) introduced the Safe λ -calculus.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

Aehlig, de Miranda, Ong (2004) introduced the Safe λ-calculus.

What is the Safety Restriction?

- First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.
- Aehlig, de Miranda, Ong (2004) introduced the Safe λ -calculus.

• Simple types $A := o \mid A \rightarrow A$.

- The order of a type is given by order(o) = 0, order(A → B) = max(order(A) + 1, order(B)).
- ▶ Jugdements of the form $\Gamma \vdash M$: T where Γ is the context, M is the term and T is the type:

$$(var) \frac{1 \vdash M : A}{x : A \vdash x : A} \qquad (wk) \frac{1 \vdash M : A}{\Delta \vdash M : A} \Gamma \subset \Delta$$
$$(app) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad (abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A \cdot M : A \to B}$$

- ► Example: $f : o \to o \to o, x : o \vdash (\lambda \varphi^{o \to o} x^o. \varphi x)(f x)$
- ► A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

・ロト・西ト・西ト・日・ うらの

• Simple types $A := o \mid A \rightarrow A$.

The order of a type is given by order(o) = 0, order(A → B) = max(order(A) + 1, order(B)).

Jugdements of the form Γ ⊢ M : T where Γ is the context, M is the term and T is the type:

$$(var) \frac{1 \vdash M : A}{x : A \vdash x : A} \qquad (wk) \frac{1 \vdash M : A}{\Delta \vdash M : A} \Gamma \subset \Delta$$
$$(app) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad (abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A \cdot M : A \to B}$$

► Example: $f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi x)(f x)$

► A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

・ロト ・ 日本・ 小田・ 小田・ 一日・ 今日・

• Simple types $A := o \mid A \rightarrow A$.

- The order of a type is given by order(o) = 0, order(A → B) = max(order(A) + 1, order(B)).
- Jugdements of the form Γ ⊢ M : T where Γ is the context, M is the term and T is the type:

$$(var) \frac{1 \vdash M : A}{x : A \vdash x : A} \qquad (wk) \frac{1 \vdash M : A}{\Delta \vdash M : A} \Gamma \subset \Delta$$
$$(app) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad (abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A \cdot M : A \to B}$$

Example: f : o → o → o, x : o ⊢ (λφ^{o→o}x^o.φ x)(f x)
 A single rule: β-reduction. e.g. (λx.M)N →_β M[N/x]

• Simple types $A := o \mid A \rightarrow A$.

- The order of a type is given by order(o) = 0, order(A → B) = max(order(A) + 1, order(B)).
- Jugdements of the form Γ ⊢ M : T where Γ is the context, M is the term and T is the type:

$$(var) \frac{1 \vdash M : A}{x : A \vdash x : A} \qquad (wk) \frac{1 \vdash M : A}{\Delta \vdash M : A} \Gamma \subset \Delta$$
$$(app) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad (abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A \cdot M : A \to B}$$

► Example: $f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi x)(f x)$

► A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

• Simple types $A := o \mid A \rightarrow A$.

- The order of a type is given by order(o) = 0, order(A → B) = max(order(A) + 1, order(B)).
- Jugdements of the form Γ ⊢ M : T where Γ is the context, M is the term and T is the type:

$$(var) \frac{1 \vdash M : A}{x : A \vdash x : A} \qquad (wk) \frac{1 \vdash M : A}{\Delta \vdash M : A} \Gamma \subset \Delta$$
$$(app) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B} \quad (abs) \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^A \cdot M : A \to B}$$

- ► Example: $f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi x)(f x)$
- ► A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
 Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
 Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
 Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.

(日) (同) (三) (三) (三) (○) (○)

Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
 Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$

Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.

Another solution: switch to the λ-calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.
 Drawback: the conversion to nameless de Brujin λ-terms requires an unbounded supply of indices.

The Safe λ -Calculus

The formation rules

$$(var) \frac{(var)}{x : A \vdash_{s} x : A} \qquad (wk) \frac{\Gamma \vdash_{s} M : A}{\Delta \vdash_{s} M : A} \Gamma \subset \Delta$$

$$(app) \frac{\Gamma \vdash M : (A, \dots, A_{l}, B) \quad \Gamma \vdash_{s} N_{1} : A_{1} \quad \dots \quad \Gamma \vdash_{s} N_{l} : A_{l}}{\Gamma \vdash_{s} MN_{1} \dots N_{l} : B}$$
with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(B)$

$$(abs) \frac{\Gamma, x_{1} : A_{1} \dots x_{n} : A_{n} \vdash_{s} M : B}{\Gamma \vdash_{s} \lambda x_{1} : A_{1} \dots x_{n} : A_{n} M : A_{1} \to \dots \to A_{n} \to B}$$

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(A_1 \to \ldots \to A_n \to B)$

・ロト ・ 雪 ト ・ ヨ ト

э

Property

In the Safe $\lambda\text{-calculus}$ there is no need to rename variables when performing substitution.

The Safe λ -Calculus

The formation rules

$$(var) \frac{(var)}{x : A \vdash_{s} x : A} \qquad (wk) \frac{\Gamma \vdash_{s} M : A}{\Delta \vdash_{s} M : A} \Gamma \subset \Delta$$

$$(app) \frac{\Gamma \vdash M : (A, \dots, A_{l}, B) \quad \Gamma \vdash_{s} N_{1} : A_{1} \quad \dots \quad \Gamma \vdash_{s} N_{l} : A_{l}}{\Gamma \vdash_{s} MN_{1} \dots N_{l} : B}$$
with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(B)$

$$(abs) \frac{\Gamma, x_{1} : A_{1} \dots x_{n} : A_{n} \vdash_{s} M : B}{\Gamma \vdash_{s} \lambda x_{1} : A_{1} \dots x_{n} : A_{n} M : A_{1} \to \dots \to A_{n} \to B}$$

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(A_1 \to \ldots \to A_n \to B)$

Property

In the Safe $\lambda\text{-calculus}$ there is no need to rename variables when performing substitution.

Examples

• Contracting the β -redex in the following term

$$f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi \ x)(f \ x)$$

leads to variable capture:

$$(\lambda \varphi x. \varphi x)(f x) \not\rightarrow_{\beta} (\lambda x. (f x)x).$$

Hence the term is unsafe. Indeed, $\operatorname{ord}(x) = 0 \le 1 = \operatorname{ord}(f \ x)$. The term $(\lambda \varphi^{o \to o} x^o. \varphi \ x)(\lambda \gamma^o. \gamma)$ is safe.

Examples

• Contracting the β -redex in the following term

$$f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi \ x)(\underline{f \ x})$$

leads to variable capture:

$$(\lambda \varphi x. \varphi x)(f x) \not\rightarrow_{\beta} (\lambda x. (f x)x).$$

Hence the term is unsafe. Indeed, $\operatorname{ord}(x) = 0 \le 1 = \operatorname{ord}(f x)$.

• The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.

Examples

• Contracting the β -redex in the following term

$$f: o \to o \to o, x: o \vdash (\lambda \varphi^{o \to o} x^o. \varphi \ x)(\underline{f \ x})$$

leads to variable capture:

$$(\lambda \varphi x. \varphi x)(f x) \not\rightarrow_{\beta} (\lambda x. (f x)x).$$

Hence the term is unsafe. Indeed, $\operatorname{ord}(x) = 0 \le 1 = \operatorname{ord}(f x)$.

• The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.

Numerical functions

Church Encoding: for $n \in \mathbb{N}$, $\overline{n} = \lambda sz.s^n z$ of type $I = (o \rightarrow o) \rightarrow o \rightarrow o$.

Theorem (Schwichtenberg 1976)

The numeric function representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$cond(t, x, y) = \begin{cases} x, & if \ t = 0 \\ y, & if \ t = n+1 \end{cases}$$

cond can be represented by the unsafe term $\lambda FGH\alpha x.H(\lambda y.G\alpha x)(F\alpha x)$.

In fact *cond* is not representable in the Safe λ -calculus:

Theorem

Functions representable by safe λ -expressions of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials.

Numerical functions

Church Encoding: for $n \in \mathbb{N}$, $\overline{n} = \lambda sz.s^n z$ of type $I = (o \rightarrow o) \rightarrow o \rightarrow o$.

Theorem (Schwichtenberg 1976)

The numeric function representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$cond(t, x, y) = \begin{cases} x, & \text{if } t = 0 \\ y, & \text{if } t = n+1 \end{cases}$$

cond can be represented by the unsafe term $\lambda FGH\alpha x.H(\lambda y.G\alpha x)(F\alpha x).$

In fact *cond* is not representable in the Safe λ -calculus:

Theorem

Functions representable by safe λ -expressions of type $I \rightarrow ... \rightarrow I$ are exactly the multivariate polynomials.

Game Semantics

Let M : T be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy [[M]] on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree = canonical tree representation of a term.
- Traversals *Trav(M)* = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

T rav $(M) \cong \langle\!\langle M \rangle\!\rangle$

Reduction(Trav(M)) $\cong \llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game Semantics

Let M : T be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy [[M]] on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree = canonical tree representation of a term.
- Traversals *Trav(M)* = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

Trav $(M) \cong \langle\!\langle M \rangle\!\rangle$

Reduction(Trav(M)) $\cong \llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game Semantics

Let M : T be a pure simply typed term.

- Game-semantics provides a model of λ-calculus. M is denoted by a strategy [[M]] on a game induced by T.
- A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree = canonical tree representation of a term.
- ► Traversals *Trav*(*M*) = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

 $\mathcal{T}rav(M) \cong \langle\!\langle M \rangle\!\rangle$

 $Reduction(Trav(M)) \cong \llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game-semantic Characterisation of Safety

Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order > ord(x).

Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order > ord(m).

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Game-semantic Characterisation of Safety

- Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order > ord(x).
- Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order > ord(m).

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Game-semantic Characterisation of Safety

- Computation tree of safe terms are incrementally-bound : each variable x is bound by the first λ-node occurring in the path to the root with order > ord(x).
- Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order > ord(m).

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Conclusion and Future Works

Conclusion:

Safety is a syntactic constraint with nice algorithmic and game-semantic properties.

Future works:

- A categorical model of Safe PCF.
- Complexity classes characterised with the Safe λ-calculus?
- Safe Idealized Algol: is contextual equivalence decidable?

Related works:

- ► Jolie G. de Miranda's thesis on unsafe grammars.
- Ong introduced computation trees in LICS2006 to prove decidability of MSO theory on infinite trees generated by higher-order grammars (whether safe or not).