
A Concrete Presentation of Game Semantics

William Blum

Joint work with C.-H. Luke Ong

School of Informatics, University of Edinburgh – Oxford University Computing
Laboratory

BCTCS, 8 April 2008

Overview

I Game-semantic models are abstract i.e. independent of the
syntax of the denotated term. We give here a concrete i.e.
syntactic representation of game semantics where:

I The arena game is ‘incarnated’ by some abstract syntax tree of
the term,

I Uncovered plays are given by traversals over this tree.

I A “Correspondence Theorem” establishes the relationship
between the game-semantic and traversal models.

I The tool HOG illustrates this correspondence.

Outline

Game semantics

The theory of traversals
The ingredients
The Correspondence Theorem
Example
Demo

Applications

Conclusion

Outline

Game semantics

The theory of traversals
The ingredients
The Correspondence Theorem
Example
Demo

Applications

Conclusion

Game semantics

Model of programming languages based on games (Abramsky et al.;
Hyland and Ong; Nickau)

I 2 players: Opponnent (system) and Proponent (program)

I The term type induces an arena defining the possible moves
[[N]] = q

0 1 ...

[[N→ N]] = q0

q1

0 1 ...

0 1 ...

I Play = sequence of moves played alternatively by O and P with
justification pointers.

I Strategy for P = prefix-closed set of plays. sab in the strategy
means that P should respond b when O plays a in position s.

I The denotation of a term M, written [[M]], is a strategy for P.

I [[7 : N]] = {ε, q, q 7}
[[succ : N→ N]] = Pref ({q0q1n(n + 1) | n ∈ N})

I Compositionality: [[succ 7]] = [[succ]]; [[7]]

Game semantics: composition

I Composition is done by CSP-composition + hiding: If
σ : A→ B and µ : B → C then

“ σ;µ = (σ‖µ) � A,C ”

I The fully revealed game denotation, written 〈〈M〉〉, denotes the
set of plays obtained by not performing hiding of internal moves
during composition.

Game semantics: composition

I Composition is done by CSP-composition + hiding: If
σ : A→ B and µ : B → C then

“ σ;µ = (σ‖µ) � A,C ”

I The fully revealed game denotation, written 〈〈M〉〉, denotes the
set of plays obtained by not performing hiding of internal moves
during composition.

Outline

Game semantics

The theory of traversals
The ingredients
The Correspondence Theorem
Example
Demo

Applications

Conclusion

Computation tree
We fix a simply-typed term Γ ` M : T .
Computation tree of M is the AST of its η-long normal form.
I The η-expansion of M : A→ B is λx : A.Mx : A→ B.
I The η-long normal form of M is obtained by hereditarily
η-expanding every subterm of M occurring at an operand
position or as the body of a λ-abstraction.

Example:

` λf o→o .(λuo→o .u)f : (o → o)→ o → o

Its η-long normal form is

` λf o→ozo .

(λuo→ovo .u(λ.v))

(λyo .fy)

(λ.z)

: (o → o)→ o → o

The computation tree is:
λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

Justified sequence

I We define an enabling relation ` on the set of nodes:
I a bound variable is enabled by its binder;
I a free variable is enabled by the root ~;
I a lambda node is enabled by its parent node;
I an @-node has no enabler.

I Distinction between external nodes N~`(hereditarily justified by
the root) and the internal nodes N@` (her. just. by an @-node).

I A justified sequence is a sequence of nodes such that all the non
@-nodes have a justification pointer respecting the relation `.

I The analogy with game semantics is:
I λ-nodes ≡ O-moves
I @-nodes and variable-nodes ≡ P-moves

I Notions of alternation, P-view, O-view, P-visibility and
O-visibility.

Traversals rules

The computation is described by a set T rav(M) of justified
sequences called traversals and given by induction over the rules:

I (Empty) ε ∈ T rav(M)

I (Root) ~ ∈ T rav(M)

I (Lam) t · λξ ∈ T rav(M) =⇒ t · λξ · n ∈ T rav(M) where n is
λξ’s child and is justified by the only occurrence of its enabler in
the P-view

I (App) t · @ ∈ T rav(M) =⇒ t · @ · n
0

∈ T rav(M).

I (ExtVar) t · x ∈ T rav(M), x ∈ N~`var =⇒ t · x · n ∈ T rav(M)
for any λ-node n justified by some occurrence of its parent node
in the O-view of t.

I (IntVar) t · n · λx . . . xi

i

∈ T rav(M), xi ∈ N@`
var =⇒

t · n · λx . . . xi · ληi

i
i

∈ T rav(M).

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ · y

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ · y · λ

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ · y · λ · v

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ

Example of traversal

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

Operations on traversals

t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

I The reduction of a traversal is obtained by keeping only the
occurrences hereditarily justified by the root:

t � λfz = λfz f λ z

I @-nodes removal:

t − @ = λfz λuv u λy f λ y λ v λ z

Operations on traversals

t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

I The reduction of a traversal is obtained by keeping only the
occurrences hereditarily justified by the root:

t � λfz = λfz f λ z

I @-nodes removal:

t − @ = λfz λuv u λy f λ y λ v λ z

The Correspondence Theorem

Let M be a simply typed term of type T . There exists a function ϕ
from the nodes of the computation tree to the moves of the arenas
of 〈〈T 〉〉 such that

ϕ : T rav(M)−@ ∼=−→〈〈M〉〉

ϕ : T rav(M)�~
∼=−→[[M]] .

where

I T rav(M) = set of traversals of the computation tree of M

I T rav(M)�~ = {t � t0 | t ∈ T rav(M)}
I T rav(M)−@ = {t − @ | t ∈ T rav(M)}
I [[M]] = game-semantic denotation of M

I 〈〈M〉〉 = revealed denotation of M.

More correspondences

Computation tree notions Game-semantic equivalents

computation tree revealed arena

traversal uncovered play

reduced traversal play

path in the computation tree P-view of an uncovered play

Example: ` λf o→o.(λuo→o.u)f : (o4 → o3)→ o2 → o1

Left: computation tree. Right: arena.

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

q1

q3

q4

q2

I t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

I ptq = λfz · @ · λ · z

I ϕ(t � λfz) = ϕ(λfz · f · λ · z) = q 1 q 3 q 4 q 2 ∈ [[M]].

Example: ` λf o→o.(λuo→o.u)f : (o4 → o3)→ o2 → o1

Left: computation tree. Right: arena.

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

q1

q3

q4

q2

I t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

I ptq = λfz · @ · λ · z

I ϕ(t � λfz) = ϕ(λfz · f · λ · z) = q 1 q 3 q 4 q 2 ∈ [[M]].

Example: ` λf o→o.(λuo→o.u)f : (o4 → o3)→ o2 → o1

Left: computation tree. Right: arena.

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

q1

q3

q4

q2

ϕ

I t = λfz · @ · λuv · u · λy · f · λ · y · λ · v · λ · z

I ptq = λfz · @ · λ · z

I ϕ(t � λfz) = ϕ(λfz · f · λ · z) = q 1 q 3 q 4 q 2 ∈ [[M]].

Tool demo

Benefits
I Pedagogical: Game semantics is sometimes considered hard to

understand. Partly because of some obscure technical
definitions.

I A P-view is just a control point in the program AST. The O-view
is the dual i.e. the control point of the environment;

I Innocence means that the current control point determines the
next action taken by the program.

I Adding reference variables breaks innocence because of
side-effects.

I Visibility restricts the program to access only code that is in
scope.

I Adding general reference breaks visibility: e.g.
new x := λy .y in x a;

I Efficient: top-down computation of the game denotation as
opposed to a compositional bottom-up approach.

I only the relevant O-moves of the subterms are considered;
I hiding performed only once at the end;
I composition can be done at the syntactic level;
I traversals ending with an internal move have an O-view of length
O(ord M).

Outline

Game semantics

The theory of traversals
The ingredients
The Correspondence Theorem
Example
Demo

Applications

Conclusion

Applications, related works

I Studying infinite structures generated by higher-order programs.

I Verification: Knapik et. al. (2002) showed that MSO model
checking for trees generated by HORS of any order and verifying
the safety restriction (a syntactic restriction that constrains the
occurrences of variables according to their orders) is decidable.
Using the notions of computation tree/traversal Ong was able
to show (LICS06) that this result still holds in the unrestricted
case.

I Studying the effect of syntactic restrictions on the game
semantics model. e.g. One can show that pointers are uniquely
recoverable in the game denotation of terms satisfying the
safety restriction.

Related works:

I Stirling recently proved decidability of higher-order pattern
matching with a game-semantic approach relying on equivalent
notions of computation tree and traversal.

Applications, related works

I Studying infinite structures generated by higher-order programs.

I Verification: Knapik et. al. (2002) showed that MSO model
checking for trees generated by HORS of any order and verifying
the safety restriction (a syntactic restriction that constrains the
occurrences of variables according to their orders) is decidable.
Using the notions of computation tree/traversal Ong was able
to show (LICS06) that this result still holds in the unrestricted
case.

I Studying the effect of syntactic restrictions on the game
semantics model. e.g. One can show that pointers are uniquely
recoverable in the game denotation of terms satisfying the
safety restriction.

Related works:

I Stirling recently proved decidability of higher-order pattern
matching with a game-semantic approach relying on equivalent
notions of computation tree and traversal.

Applications, related works

I Studying infinite structures generated by higher-order programs.

I Verification: Knapik et. al. (2002) showed that MSO model
checking for trees generated by HORS of any order and verifying
the safety restriction (a syntactic restriction that constrains the
occurrences of variables according to their orders) is decidable.
Using the notions of computation tree/traversal Ong was able
to show (LICS06) that this result still holds in the unrestricted
case.

I Studying the effect of syntactic restrictions on the game
semantics model. e.g. One can show that pointers are uniquely
recoverable in the game denotation of terms satisfying the
safety restriction.

Related works:

I Stirling recently proved decidability of higher-order pattern
matching with a game-semantic approach relying on equivalent
notions of computation tree and traversal.

Applications, related works

I Studying infinite structures generated by higher-order programs.

I Verification: Knapik et. al. (2002) showed that MSO model
checking for trees generated by HORS of any order and verifying
the safety restriction (a syntactic restriction that constrains the
occurrences of variables according to their orders) is decidable.
Using the notions of computation tree/traversal Ong was able
to show (LICS06) that this result still holds in the unrestricted
case.

I Studying the effect of syntactic restrictions on the game
semantics model. e.g. One can show that pointers are uniquely
recoverable in the game denotation of terms satisfying the
safety restriction.

Related works:

I Stirling recently proved decidability of higher-order pattern
matching with a game-semantic approach relying on equivalent
notions of computation tree and traversal.

Outline

Game semantics

The theory of traversals
The ingredients
The Correspondence Theorem
Example
Demo

Applications

Conclusion

Conclusion & Future Works

I Conclusion: a new concrete way to present game semantics
based on the theory of traversals.

I Future works:

I Extend the correspondence to PCF and Idealized Algol;
I Consider the Reachability problem in the traversal setting,
I Complexity: characterization of space-complexity classes by

analyzing the length of the traversals? (See Kazushige Terui’s
work.);

Bibliography

S. Abramsky and G. McCusker
Game semantics, Lecture notes.
In Proceedings of the 1997 Marktoberdorf Summer School. 1998.

W. Blum and C.-H. L. Ong
Local computation of beta-reduction
Technical report. University of Oxford, 2008.

M. Hague, A.S. Murawski, C.-H. L. Ong and O. Serre
Collapsible pushdown automata and recursive schemes.
To appear, LICS2008.

C.-H. Luke Ong
On model-checking trees generated by higher-order recursion
schemes.
In Proceedings of LICS2006.

C. Stirling
A game-theoretic approach to deciding higher-order matching.
In Proceedings of ICALP2006.

	Game semantics
	The theory of traversals
	The ingredients
	The Correspondence Theorem
	Example
	Demo

	Applications
	Conclusion

