
The Safe λ-Calculus

William Blum

Joint work with C.-H. Luke Ong

Oxford University Computing Laboratory

Lunch-time meeting, 14 May 2007

Overview

I Safety is originally a syntactic restriction for higher-order
grammars with nice automata-theoretic characterization.

I In the context of the λ-calculus it gives rise to the Safe
λ-calculus.

I The loss of expressivity can be characterized in terms of
representable numeric functions.

I The calculus has a “succinct” game-semantic model.

Outline for this talk

Part I The safety restriction

1. Safety for higher-order grammars
2. The safe λ-calculus
3. Expressivity

Part II Game-semantic

1. The Correspondence Theorem
2. Game-semantic characterisation
3. Compositionality

Part I : The Safety

Restriction

Higher-order grammars

Notation for types: A1 → (A2 → (. . . (An → o)) . . .) is written
(A1,A2, . . . ,An, o).

I Higher-order grammars (Maslov, 1974) are used as generators
of word languages, trees or graphs.

I A higher-grammar is formally given by a tuple 〈Σ,N ,R,S〉
(terminals, non-terminals, rewritting rules, starting symbol)

I Example of a tree-generating order-2 grammar:

S → H a

H zo → F (g z)

F φ(o,o) → φ (φ (F h))

g

a g

a h

h
...

Non-terminals: S : o, H : (o, o) and F : ((o, o), o). Terminals:
a : o and g , h : (o, o).

The Safety Restriction

I First appeared under the name “restriction of derived types” in
“IO and OI Hierarchies” by W. Damm, TCS 1982

I It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

I (A1, · · · ,An, o) is homogeneous if A1, . . . , An are and
ord A1 ≥ ord A2 ≥ · · · ≥ ord An.

Definition (Knapik, Niwiński and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.
An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t ′

occurs in safe position if it is in operator position (t ′ = · · · (ts) · · ·).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.

The Safety Restriction

I First appeared under the name “restriction of derived types” in
“IO and OI Hierarchies” by W. Damm, TCS 1982

I It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

I (A1, · · · ,An, o) is homogeneous if A1, . . . , An are and
ord A1 ≥ ord A2 ≥ · · · ≥ ord An.

Definition (Knapik, Niwiński and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.
An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t ′

occurs in safe position if it is in operator position (t ′ = · · · (ts) · · ·).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.

Some Results On Safety

Damm82 For generating word languages, order-n safe grammars
are equivalent to order-n pushdown automata.

KNU02 Generalization of Damm’s result to tree generating safe
grammars/PDAs.

KNU02 The Monadic Second Order (MSO) model checking
problem for trees generated by safe higher-order
grammars of any order is decidable.

Ong06 But anyway, KNU02 result’s is also true for unsafe
grammars...

Caucal02 Graphs generated by safe grammars have a decidable
MSO theory.

HMOS06 Caucal’s result does not extend to unsafe grammars.
However deciding µ-calculus theories is n-EXPTIME
complete.

AdMO04 Proposed a notion of safety for the λ-calculus
(unpublished).

Simply Typed λ-Calculus

I Simple types A := o | A → A.

I The order of a type is given by order(o) = 0,
order(A → B) = max(order(A) + 1, order(B)).

I Jugdements of the form Γ ` M : T where Γ is the context, M is
the term and T is the type:

(var)
x : A ` x : A

(wk)
Γ ` M : A

∆ ` M : A
Γ ⊂ ∆

(app)
Γ ` M : A → B Γ ` N : A

Γ ` MN : B
(abs)

Γ, x : A ` M : B

Γ ` λxA.M : A → B

I Example: f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

I A single rule: β-reduction. e.g. (λx .M)N →β M[N/x]

The Safe λ-Calculus

The formation rules

(var)
x : A `s x : A

(wk)
Γ `s M : A

∆ `s M : A
Γ ⊂ ∆

(app)
Γ ` M : (A1, . . . ,Al ,B) Γ `s N1 : A1 . . . Γ `s Nl : Al

Γ `s MN1 . . . Nl : B

with the side-condition ∀y ∈ Γ : ord y ≥ ordB

(abs)
Γ, x1 : A1 . . . xn : An `s M : B

Γ `s λx1 : A1 . . . xn : An.M : A1 → . . . → An → B

with the side-condition ∀y ∈ Γ : ord y ≥ ord A1 → . . . → An → B

Lemma

If Γ `s M : A then every free variable in M has order at least ordA.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. Safety does not capture “variable-renaming uselessness”.
E.g. the unsafe term λyozo .(λxo .y)z can be contracted using
capture-permitting substitution.

4. Up to order 2, β-normal terms are always safe.

5. Kierstead terms λf ((o,o),o).f (λxo .f (λyo .y)) is safe but
λf ((o,o),o).f (λxo .f (λyo .x)) is unsafe.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.

Expressivity

Safety is a strong constraint but it is still unclear how it restricts
expressivity:

I de Miranda showed that at order 2 for word languages,
non-determinism palliates the loss of expressivity. It is unknown
if this extends to higher orders.

I For tree-generating grammars: Urzyczyn conjectured that safety
is a proper constraint i.e. that there is a tree which is
intrinsically unsafe. He proposed a possible counter-example.

I For graphs, HMOS06’s undecidability result implies that safety
restricts expressivity.

I For simply-typed terms: ...

Numerical functions

Church Encoding: for n ∈ N, n = λsz .snz of type
I = (o → o) → o → o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type

I → . . . → I are exactly the multivariate polynomials extended with

the conditional function:

cond(t, x , y) =

{

x , if t = 0
y , if t = n + 1 .

cond is represented by the term C = λFGHαx .H(λy .Gαx)(Fαx).

Theorem

Functions representable by safe λ-expressions of type I → . . . → I

are exactly the multivariate polynomials.

So cond is not representable in the Safe λ-calculus and C is unsafe.

Numerical functions

Church Encoding: for n ∈ N, n = λsz .snz of type
I = (o → o) → o → o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type

I → . . . → I are exactly the multivariate polynomials extended with

the conditional function:

cond(t, x , y) =

{

x , if t = 0
y , if t = n + 1 .

cond is represented by the term C = λFGHαx .H(λy .Gαx)(Fαx).

Theorem

Functions representable by safe λ-expressions of type I → . . . → I

are exactly the multivariate polynomials.

So cond is not representable in the Safe λ-calculus and C is unsafe.

Part II : Game semantics

Game semantics

Model of programming languages based on games (Abramsky et al.;
Hyland and Ong; Nickau)

I 2 players: Opponnent (system) and Proponent (program)

I The term type induces an arena defining the possible moves
[[N]] = q

0 1 ...

[[N → N]] = q0

q1

0 1 ...

0 1 ...

I Play = sequence of moves played alternatively by O and P with
justification pointers.

I Strategy for P = prefix-closed set of plays. sab in the strategy
means that P should respond b when O plays a in position s.

I The denotation of a term M, written [[M]], is a strategy for P.

I [[7 : N]] = {ε, q, q 7}
[[succ : N → N]] = Pref ({q0q1n(n + 1) | n ∈ N})

I Compositionality: [[succ 7]] = [[succ]]; [[7]]

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ · x λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ · x · λ λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ · x · λ · z λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ · x · λ · z

Traversal reduction: keep only nodes
hereditarily justified by the root.

t � r = λfz · f · λ · z

λfz

@

λgx

f

λ

x

λy

y

λ

z

Computation trees and traversals

Computation tree: AST of the η-long normal form of a term.
Example: M ≡ λfz .(λgx .fx)(λy .y)z of type (o → o) → o → o.

Traversal: justified sequence of nodes
representing the computation.

t = λfz · @ · λgx · f · λ · x · λ · z

Traversal reduction: keep only nodes
hereditarily justified by the root.

t � r = λfz · f · λ · z

@-nodes removal:

t − @ = λfz · λgx · f · λ · x · λ · z

λfz

@

λgx

f

λ

x

λy

y

λ

z

The Correspondence Theorem

Let M be a simply typed term of type T . There exists a partial
function ϕ from the nodes of the computation tree to the moves of
the arena [[T]] such that

ϕ : T rav(M)−@ ∼=
−→〈〈M〉〉

ϕ : T rav(M)�r
∼=

−→[[M]] .

where

I T rav(M) = set of traversals of the computation tree of M

I T rav(M)�r = {t � r | t ∈ T rav(M)}

I T rav(M)−@ = {t − @ | t ∈ T rav(M)}

I [[M]] = game-semantic denotation of M

I 〈〈M〉〉 = revealed denotion (i.e. internal moves are uncovered.)

The Correspondence Theorem (example)

Left: computation tree. Right: arena.

λfz

@

λgx

f

λ

x

λy

y

λ

z

q1

q3

q4

q2 q5

ϕ

Take the traversal t = λfz · @ · λgx · f · λ · x · λ · z . We

have: ϕ(t � r) = ϕ(λfz · f · λ · z) = q 1 q 3 q 4 q 2 ∈ [[M]].

The Correspondence Theorem (2)

Computation tree notions Game-semantic equivalents

computation tree arena(s)

traversal uncovered play

reduced traversal play

path in the computation tree P-view of an uncovered play

Game-semantic Characterisation of Safety

I The computation tree of a safe term is incrementally-bound :
each variable x is bound by the first λ-node occurring in the
path to the root with order > ord x .

I By the Correspondence Theorem, this implies that:

Proposition

I Safe terms are denoted by P-incrementally justified strategies: each
P-move m points to the last O-move in the P-view with order
> ordm.

I Reciprocally, if a closed term is denoted by a P-incrementally justified
strategy then its η-long β-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Game-semantic Characterisation of Safety

I The computation tree of a safe term is incrementally-bound :
each variable x is bound by the first λ-node occurring in the
path to the root with order > ord x .

I By the Correspondence Theorem, this implies that:

Proposition

I Safe terms are denoted by P-incrementally justified strategies: each
P-move m points to the last O-move in the P-view with order
> ordm.

I Reciprocally, if a closed term is denoted by a P-incrementally justified
strategy then its η-long β-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Game-semantic Characterisation of Safety

I The computation tree of a safe term is incrementally-bound :
each variable x is bound by the first λ-node occurring in the
path to the root with order > ord x .

I By the Correspondence Theorem, this implies that:

Proposition

I Safe terms are denoted by P-incrementally justified strategies: each
P-move m points to the last O-move in the P-view with order
> ordm.

I Reciprocally, if a closed term is denoted by a P-incrementally justified
strategy then its η-long β-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.

Compositionality

Question Do P-incrementally-justified strategies compose?
No. Take σ = [[`s λxovo .x : o → (o, o)]] and
µ = [[`s λy (o,o)ϕ((o,o),o).ϕ(λuo .ya) : (o, o) → (((o, o), o), o)]] for
some constant a : o. We have σ # µ = [[λxϕ.ϕ(λu.x)]] which is not
P-i.j. by the previous proposition.

A B C

o
σ

−→ o, o
µ

−→ ((o, o), o), o

λxϕ • λyϕ
ϕ ◦ ϕ

λu • λu

•λxv ◦ y

x ◦ x

Compositionality 2

Definition

A strategy σ : A → B is closed P-incrementally justified if it P-i.j.
and if for every move m initial in A that is contained in some play of
σ we have ordA m ≥ ord B .

I Remark: This property is not preserved up to the Curry
isomorphism!

I Example: any P-i.j. strategy on I → A is closed P-i.j.

I Safe terms denotations are closed P-i.j.

Proposition

Closed P-incrementally justified strategies compose.

Hence we have:

I a category of games and closed P-i.j. strategies,

I that is not cartesian-closed,

I which models the safe λ-calculus.

Compositionality 2

Definition

A strategy σ : A → B is closed P-incrementally justified if it P-i.j.
and if for every move m initial in A that is contained in some play of
σ we have ordA m ≥ ord B .

I Remark: This property is not preserved up to the Curry
isomorphism!

I Example: any P-i.j. strategy on I → A is closed P-i.j.

I Safe terms denotations are closed P-i.j.

Proposition

Closed P-incrementally justified strategies compose.

Hence we have:

I a category of games and closed P-i.j. strategies,

I that is not cartesian-closed,

I which models the safe λ-calculus.

Safe PCF

I PCF = λ→ with base type N + successor, predecessor,
conditional + Y combinator

I Safe PCF = Safe fragment of PCF

Proposition

Safe PCF terms are denoted by closed P-i.j. strategies.

Definability

Let σ be a well-bracketed innocent P-i.j. strategy with finite view
function defined on a PCF arena A1 × . . . × Ai → B . σ is the
denotation of some term x : A ` M : B such that λx .M is safe.

Question: Does this give a fully abstract model with respect to safe
contexts? Problem: The quotiented category model is not rational
(since it is not even cartesian closed)!

Conclusion and Future Works

Conclusion:
Safety is a syntactic constraint with interesting algorithmic and
game-semantic properties.
Future works:

I Is there a fully abstract model of Safe PCF (with respect to safe
contexts)?

I Complexity classes characterised with the Safe λ-calculus?

I Safe Idealized Algol: is contextual equivalence decidable for
some finitary fragment (e.g. Safe IA4) (with respect to all/safe
contexts) ?

Related works:

I Jolie G. de Miranda’s thesis on safe/unsafe grammars.

I Ong introduced computation trees in LICS2006 to prove
decidability of MSO theory on infinite trees generated by
higher-order grammars (whether safe or not).

	Title page
	Overview
	Outline for this talk
	The Safety Restriction
	Higher-order grammars
	The Safety Restriction
	Some Results On Safety
	Simply Typed Lambda-Calculus
	The Safe Lambda-Calculus
	Variable Capture
	Examples
	Transformations preserving safety
	Expressivity
	Numerical functions

	Game semantics
	Game semantics
	Computation trees and traversals
	The Correspondence Theorem
	The Correspondence Theorem (example)
	The Correspondence Theorem (2)
	Game-semantic Characterisation of Safety
	Compositionality
	Compositionality 2
	Safe PCF
	Conclusion and Future Works

