
The Safe λ-Calculus

William Blum and C.-H. Luke Ong

Oxford University Computing Laboratory

TLCA 2007



Overview

I Safety is originally a syntactic restriction for higher-order
grammars with nice automata-theoretic characterization.

I In the context of the λ-calculus it gives rise to the Safe
λ-calculus.

I The loss of expressivity can be characterized in terms of
representable numeric functions.

I The calculus has a “succinct” game-semantic model.



Outline for this talk

1. The safety restriction for higher-order grammars

2. The safe λ-calculus

3. Expressivity

4. Game-semantic characterization

5. Safe PCF, Safe IA



Higher-order grammars

Notation for types: A1 → (A2 → (. . . (An → o)) . . .) is written
(A1,A2, . . . ,An, o).

I Higher-order grammars are used as generators of word
languages (Maslov, 1974), trees (KNU01) or graphs.

I A higher-order grammar is formally given by a tuple
〈Σ,N ,R,S〉 (terminals, non-terminals, rewritting rules, starting
symbol)

I Example of a tree-generating order-2 grammar:

S → H a
H zo → F (g z)

F φ(o,o) → φ (φ (F h))

g

a g

a h

h
...

Non-terminals: S : o, H : (o, o) and F : ((o, o), o).
Terminals: a : o and g , h : (o, o).



The Safety Restriction

I First appeared under the name “restriction of derived types” in
“IO and OI Hierarchies” by W. Damm, TCS 1982

I It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

I (A1, · · · ,An, o) is homogeneous if A1, . . . , An are, and
ord A1 ≥ ord A2 ≥ · · · ≥ ord An.

Definition (Knapik, Niwiński and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.
An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t ′

occurs in safe position if it is in operator position (t ′ = · · · (ts) · · · ).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.



The Safety Restriction

I First appeared under the name “restriction of derived types” in
“IO and OI Hierarchies” by W. Damm, TCS 1982

I It is a syntactic restriction for higher-order grammars that
constrains the occurrences of the variables in the grammar
equations according to their orders.

I (A1, · · · ,An, o) is homogeneous if A1, . . . , An are, and
ord A1 ≥ ord A2 ≥ · · · ≥ ord An.

Definition (Knapik, Niwiński and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.
An order k > 0 term is unsafe if it contains an occurrence of a
parameter of order strictly less than k. An unsafe subterm t of t ′

occurs in safe position if it is in operator position (t ′ = · · · (ts) · · · ).
A grammar is safe if at the right-hand side of any production all
unsafe subterms occur in safe positions.



Safe grammars: examples

Take h : o → o, g : o → o → o, a : o.
The following grammar is unsafe:

S → H a
H zo → F (g z)

F φ(o,o) → φ (φ (F h))

It is equivalent to the following safe grammar:

S → F (g a)

F φ(o,o) → φ (φ (F h))



Safe grammars: examples

Take h : o → o, g : o → o → o, a : o.
The following grammar is unsafe:

S → H a
H zo → F (g z)

F φ(o,o) → φ (φ (F h))

It is equivalent to the following safe grammar:

S → F (g a)

F φ(o,o) → φ (φ (F h))



Some Results On Safety

Damm82 For generating word languages, order-n safe grammars
are equivalent to order-n pushdown automata.

KNU02 Generalization of Damm’s result to tree generating safe
grammars/PDAs.

KNU02 The Monadic Second Order (MSO) model checking
problem for trees generated by safe higher-order
grammars of any order is decidable.

Ong06 But anyway, KNU02 result’s is also true for unsafe
grammars...

Caucal02 Graphs generated by safe grammars have a decidable
MSO theory.

HMOS06 Caucal’s result does not extend to unsafe grammars.
However deciding µ-calculus theories is n-EXPTIME
complete.

AdMO04 Proposed a notion of safety for the λ-calculus
(unpublished).



Simply Typed λ-Calculus

I Simple types A := o | A→ A.

I The order of a type is given by order(o) = 0,
order(A→ B) = max(order(A) + 1, order(B)).

I Jugdements of the form Γ ` M : T where Γ is the context, M is
the term and T is the type:

(var)
x : A ` x : A

(wk)
Γ ` M : A

∆ ` M : A
Γ ⊂ ∆

(app)
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B
(abs)

Γ, x : A ` M : B

Γ ` λxA.M : A→ B

I Example: f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

I A single rule: β-reduction. e.g. (λx .M)N →β M[N/x ]



The Safe λ-Calculus

The formation rules

(var)
x : A `s x : A

(wk)
Γ `s M : A

∆ `s M : A
Γ ⊂ ∆

(app)
Γ ` M : (A1, . . . ,Al ,B) Γ `s N1 : A1 . . . Γ `s Nl : Al

Γ `s MN1 . . .Nl : B

with the side-condition ∀y ∈ Γ : ord y ≥ ord B

(abs)
Γ, x1 : A1 . . . xn : An `s M : B

Γ `s λx1 : A1 . . . xn : An.M : A1 → . . .→ An → B

with the side-condition ∀y ∈ Γ : ord y ≥ ord A1 → . . .→ An → B

Lemma

If Γ `s M : A then every free variable in M has order at least ord A.



The Safe λ-Calculus : examples

I Some examples of safe terms: λx .x , λxy .x , λxy .y .

I Up to order 2, β-normal terms are always safe.

I The two Kierstead terms (order 3). Only one of them is safe:

λf ((o,o),o).f (λxo .f (λyo .y))

λf ((o,o),o).f (λxo .f (λyo .x))

I An example of safe term not in β-normal form:

(λϕo→oxo .ϕ x)(λyo .y)



The Safe λ-Calculus : examples

I Some examples of safe terms: λx .x , λxy .x , λxy .y .

I Up to order 2, β-normal terms are always safe.

I The two Kierstead terms (order 3). Only one of them is safe:

λf ((o,o),o).f (λxo .f (λyo .y))

λf ((o,o),o).f (λxo .f (λyo .x))

I An example of safe term not in β-normal form:

(λϕo→oxo .ϕ x)(λyo .y)



The Safe λ-Calculus : examples

I Some examples of safe terms: λx .x , λxy .x , λxy .y .

I Up to order 2, β-normal terms are always safe.

I The two Kierstead terms (order 3). Only one of them is safe:

λf ((o,o),o).f (λxo .f (λyo .y))

λf ((o,o),o).f (λxo .f (λyo .x))

I An example of safe term not in β-normal form:

(λϕo→oxo .ϕ x)(λyo .y)



The Safe λ-Calculus : examples

I Some examples of safe terms: λx .x , λxy .x , λxy .y .

I Up to order 2, β-normal terms are always safe.

I The two Kierstead terms (order 3). Only one of them is safe:

λf ((o,o),o).f (λxo .f (λyo .y))

λf ((o,o),o).f (λxo .f (λyo .x))

I An example of safe term not in β-normal form:

(λϕo→oxo .ϕ x)(λyo .y)



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable Capture
The usual “problem” in λ-calculus: avoid variable capture when
performing substitution: (λx .(λy .x))y →β (λy .x)[y/x ] 6= λy .y

1. Standard solution: Barendregt’s convention. Variables are
renamed so that free variables and bound variables have
different names. Eg. (λx .(λy .x))y becomes (λx .(λz .x))y which
reduces to (λz .x)[y/x ] = λz .y
Drawback: requires to have access to an unbounded supply of
names to perform a given sequence of β-reductions.

2. Another solution: use the λ-calculus à la de Brujin where
variable binding is specified by an index instead of a name.
Variable renaming then becomes unnecessary.
Drawback: the conversion to nameless de Brujin λ-terms
requires an unbounded supply of indices.

Property

In the Safe λ-calculus there is no need to rename variables when
performing substitution.



Variable capture: examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. The unsafe term λyozo .(λxo .y)z can be contracted without
renaming variables. Hence not all terms whose β-contraction
can be correctly implemented by capture permitting
substitution, are safe.



Variable capture: examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. The unsafe term λyozo .(λxo .y)z can be contracted without
renaming variables. Hence not all terms whose β-contraction
can be correctly implemented by capture permitting
substitution, are safe.



Variable capture: examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. The unsafe term λyozo .(λxo .y)z can be contracted without
renaming variables. Hence not all terms whose β-contraction
can be correctly implemented by capture permitting
substitution, are safe.



Variable capture: examples

1. Contracting the β-redex in the following term

f : o → o → o, x : o ` (λϕo→oxo .ϕ x)(f x)

leads to variable capture:

(λϕx .ϕ x)(f x) 6→β (λx .(f x)x).

Hence the term is unsafe. Indeed, ord x = 0 ≤ 1 = ord f x .

2. The term (λϕo→oxo .ϕ x)(λyo .y) is safe.

3. The unsafe term λyozo .(λxo .y)z can be contracted without
renaming variables. Hence not all terms whose β-contraction
can be correctly implemented by capture permitting
substitution, are safe.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Transformations preserving safety

I Substitution preserves safety.

I β-reduction does not preserve safety: Take w , x , y , z : o and
f : (o, o, o). The safe term (λxy .f x y)z w β-reduces to the
unsafe term (λy .f z y)w which in turns reduces to the safe
term f z w .

I Safe β-reduction: reduces simultaneously as many β-redexes as
needed in order to reach a safe term.

I Safe β-reduction preserves safety.

I η-reduction preserves safety.

I η-expansion does not preserve safety.
E.g. `s λyozo .y : (o, o, o) but 6`s λxo .(λyozo .y)x : (o, o, o).

I η-long normal expansion preserves safety.



Expressivity

Safety is a strong constraint but it is still unclear how it restricts
expressivity:

I de Miranda and Ong showed that at order 2 for word languages,
non-determinism palliates the loss of expressivity. It is unknown
if this extends to higher orders.

I For tree-generating grammars: Urzyczyn conjectured that safety
is a proper constraint i.e. that there is a tree which is
intrinsically unsafe. He proposed a possible counter-example.

I For graphs, HMOS06’s undecidability result implies that safety
restricts expressivity.

I For simply-typed terms: ...



Numerical functions

Church Encoding: for n ∈ N, n = λsz .snz of type
I = (o → o)→ o → o.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type
I → . . .→ I are exactly the multivariate polynomials extended with
the conditional function:

cond(t, x , y) =

{
x , if t = 0
y , if t = n + 1 .



Numerical functions (2)

Let n,m ∈ N.

I Natural number: n = λsz .snz : (o → o)→ o → o. Safe.

I Addition: n + m = λα(o,o)xo .(nα)(mα x). Safe.

I Multiplication: n.m = λα(o,o).n (mα). Safe.

I Conditional: C = λFGHαx .H(λy .Gαx)(Fαx). Unsafe.

In fact:

Theorem

Functions representable by safe λ-expressions of type I → . . .→ I
are exactly the multivariate polynomials.



Numerical functions (2)

Let n,m ∈ N.

I Natural number: n = λsz .snz : (o → o)→ o → o. Safe.

I Addition: n + m = λα(o,o)xo .(nα)(mα x). Safe.

I Multiplication: n.m = λα(o,o).n (mα). Safe.

I Conditional: C = λFGHαx .H(λy .Gαx)(Fαx). Unsafe.

In fact:

Theorem

Functions representable by safe λ-expressions of type I → . . .→ I
are exactly the multivariate polynomials.



Numerical functions (2)

Let n,m ∈ N.

I Natural number: n = λsz .snz : (o → o)→ o → o. Safe.

I Addition: n + m = λα(o,o)xo .(nα)(mα x). Safe.

I Multiplication: n.m = λα(o,o).n (mα). Safe.

I Conditional: C = λFGHαx .H(λy .Gαx)(Fαx). Unsafe.

In fact:

Theorem

Functions representable by safe λ-expressions of type I → . . .→ I
are exactly the multivariate polynomials.



Numerical functions (2)

Let n,m ∈ N.

I Natural number: n = λsz .snz : (o → o)→ o → o. Safe.

I Addition: n + m = λα(o,o)xo .(nα)(mα x). Safe.

I Multiplication: n.m = λα(o,o).n (mα). Safe.

I Conditional: C = λFGHαx .H(λy .Gαx)(Fαx). Unsafe.

In fact:

Theorem

Functions representable by safe λ-expressions of type I → . . .→ I
are exactly the multivariate polynomials.



Numerical functions (2)

Let n,m ∈ N.

I Natural number: n = λsz .snz : (o → o)→ o → o. Safe.

I Addition: n + m = λα(o,o)xo .(nα)(mα x). Safe.

I Multiplication: n.m = λα(o,o).n (mα). Safe.

I Conditional: C = λFGHαx .H(λy .Gαx)(Fαx). Unsafe.

In fact:

Theorem

Functions representable by safe λ-expressions of type I → . . .→ I
are exactly the multivariate polynomials.



Game semantics

Model of programming languages based on games (Abramsky et al.;
Hyland and Ong; Nickau)

I 2 players: Opponnent (system) and Proponent (program)

I The term type induces an arena defining the possible moves
[[N]] = q

0 1 ...

[[N→ N]] = q0

q1

0 1 ...

0 1 ...

I Play = justified sequence of moves played alternatively by O
and P with justification pointers.

I Strategy for P = prefix-closed set of plays. sab in the strategy
means that P should respond b when O plays a in position s.

I The denotation of a term M, written [[M]], is a strategy for P.

I [[7 : N]] = {ε, q, q 7}
[[succ : N→ N]] = Pref ({q0q1n(n + 1) | n ∈ N})

I Compositionality: [[succ 7]] = [[succ]]; [[7]]



Game-semantic Characterization of Safety

The variable binding restriction imposed by the safety constraint
implies:

Theorem
I Safe terms are denoted by P-incrementally justified strategies:

each P-move m points to the last O-move in the P-view with
order > ord m.

I Conversely, if a closed term is denoted by a P-incrementally
justified strategy then its η-long β-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.



Game-semantic Characterization of Safety

The variable binding restriction imposed by the safety constraint
implies:

Theorem
I Safe terms are denoted by P-incrementally justified strategies:

each P-move m points to the last O-move in the P-view with
order > ord m.

I Conversely, if a closed term is denoted by a P-incrementally
justified strategy then its η-long β-normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the
game-semantics of safe terms.



Safe PCF

I PCF = λ→ with base type N + successor, predecessor,
conditional + Y combinator

I Safe PCF = Safe fragment of PCF

Proposition

Safe PCF terms are denoted by P-i.j. strategies.

The first fully-abstract models of PCF were based on game
semantics (Abramsky et al., Hyland and Ong, Nickau).
Question: Are P-i.j. strategies, suitably quotiented, fully abstract for
Safe PCF?



Idealized Algol (IA) : Open problem

I IA = PCF + block-allocated variables + imperative features

I Introduced by John Reynolds, 1997.

I IAi + Yj : fragment of IA with finite base type, terms of order
≤ i , recursion limited to order j

Two IA terms are equivalent iff the two sets of complete plays of the
game denotations are equal [Abramsky,McCusker].

I IA2: the set of complete plays is regular [Ghica&McCusker00].

I IA3 + Y0: DPDA definable [Ong02].

I IA3 + while: Visibly Pushdown Automaton definable
[Murawski&Walukievicz05].

Hence observational equivalence is decidable for all these fragments.
However at order 4, observational equivalence is undecidable
[Mur05].
Question: Is observational equivalence decidable for the safe
fragment of IA4?



Conclusion and Future Works
Conclusion:
Safety is a syntactic constraint with interesting algorithmic and
game-semantic properties.
Future work:

I What is a (categorical) model of the safe lambda calculus?

I Can we obtain a fully abstract model of Safe PCF (with respect
to safe contexts)?

I Complexity classes characterized with the Safe λ-calculus?

I Safe Idealized Algol: is contextual equivalence decidable for
some finitary fragment (e.g. Safe IA4) (with respect to all/safe
contexts) ?

Related works:

I Jolie G. de Miranda’s thesis on safe/unsafe grammars.

I Ong introduced computation trees in LICS2006 to prove
decidability of MSO theory on infinite trees generated by
higher-order grammars (whether safe or not).


	Title page
	Overview
	Outline for this talk
	Higher-order grammars
	The Safety Restriction
	Safe grammars: examples
	Some Results On Safety
	Simply Typed Lambda-Calculus
	The Safe Lambda-Calculus
	The Safe Lambda-Calculus : examples
	Variable Capture
	Variable capture: examples
	Transformations preserving safety
	Expressivity
	Numerical functions
	Numerical functions (2)
	Game semantics
	Game-semantic Characterization of Safety
	Safe PCF
	Idealized Algol : Open problem
	Conclusion and Future Works

